We give a general Gaussian bound for the first chaos (or innovation) of point processes with stochastic intensity constructed by embedding in a bivariate Poisson process. We apply the general result to nonlinear Hawkes processes, providing quantitative central limit theorems.

Gaussian approximation of nonlinear Hawkes processes

Torrisi;Giovanni Luca
2016

Abstract

We give a general Gaussian bound for the first chaos (or innovation) of point processes with stochastic intensity constructed by embedding in a bivariate Poisson process. We apply the general result to nonlinear Hawkes processes, providing quantitative central limit theorems.
2016
Istituto Applicazioni del Calcolo ''Mauro Picone''
Clark-Ocone formula
Gaussian approximation
Hawkes process
Malliavin's calculus
Poisson process
Stein's method
Stochastic intensity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/322920
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact