A series of bimetallic ruthenium complexes [{Ru(dppe)Cp*}2(?-C?CArC?C)] featuring diethynylaromatic bridging ligands (Ar = 1,4-phenylene, 1,4-naphthylene, 9,10-anthrylene) have been prepared and some representative molecular structures determined. A combination of UV-vis-NIR and IR spectroelectrochemical methods and density functional theory (DFT) have been used to demonstrate that one-electron oxidation of compounds [{Ru(dppe)Cp*}2(?-C?CArC?C)](HC?CArC?CH = 1,4-diethynylbenzene; 1,4-diethynyl-2,5-dimethoxybenzene; 1,4-diethynylnaphthalene; 9,10-diethynylanthracene) yields solutions containing radical cations that exhibit characteristics of both oxidation of the diethynylaromatic portion of the bridge, and a mixed-valence state. The simultaneous population of bridge-oxidized and mixed-valence states is likely related to a number of factors, including orientation of the plane of the aromatic portion of the bridging ligand with respect to the metal d-orbitals of appropriate ?-symmetry.

Simultaneous bridge-localized and mixed-valence character in diruthenium radical cations featuring diethynylaromatic bridging ligands

Manca Gabriele;Manca Gabriele;
2011

Abstract

A series of bimetallic ruthenium complexes [{Ru(dppe)Cp*}2(?-C?CArC?C)] featuring diethynylaromatic bridging ligands (Ar = 1,4-phenylene, 1,4-naphthylene, 9,10-anthrylene) have been prepared and some representative molecular structures determined. A combination of UV-vis-NIR and IR spectroelectrochemical methods and density functional theory (DFT) have been used to demonstrate that one-electron oxidation of compounds [{Ru(dppe)Cp*}2(?-C?CArC?C)](HC?CArC?CH = 1,4-diethynylbenzene; 1,4-diethynyl-2,5-dimethoxybenzene; 1,4-diethynylnaphthalene; 9,10-diethynylanthracene) yields solutions containing radical cations that exhibit characteristics of both oxidation of the diethynylaromatic portion of the bridge, and a mixed-valence state. The simultaneous population of bridge-oxidized and mixed-valence states is likely related to a number of factors, including orientation of the plane of the aromatic portion of the bridging ligand with respect to the metal d-orbitals of appropriate ?-symmetry.
2011
mixed valence compounds; electron transfer; DFT calculations
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/323179
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 137
  • ???jsp.display-item.citation.isi??? 134
social impact