An overview is given of methods for the computational prediction of the atomistic and electronic structures of nanoscale oxide interfaces. Global optimization approaches for structure prediction, together with total energy and electronic structure methods are reviewed and discussed. Our aim is to furnish conceptual instruments to select the optimal (i.e., the most accurate and least costly) method for treating a given system, and to understand the potentialities and limitations of current approaches. Theoretical modeling of the structural, catalytic, mechanical, optical and magnetic properties of nanoscale oxides is also briefly described. Finally, an outlook on extending computational and experimental investigation from crystalline-like to amorphous oxide ultrathin layers and the challenges to be faced when dealing with these more complex systems is presented. Final remarks conclude the chapter.

Atomistic and Electronic Structure Methods for Nanostructured Oxide Interfaces

Barcaro Giovanni;Sementa Luca;Fortunelli Alessandro
2016

Abstract

An overview is given of methods for the computational prediction of the atomistic and electronic structures of nanoscale oxide interfaces. Global optimization approaches for structure prediction, together with total energy and electronic structure methods are reviewed and discussed. Our aim is to furnish conceptual instruments to select the optimal (i.e., the most accurate and least costly) method for treating a given system, and to understand the potentialities and limitations of current approaches. Theoretical modeling of the structural, catalytic, mechanical, optical and magnetic properties of nanoscale oxides is also briefly described. Finally, an outlook on extending computational and experimental investigation from crystalline-like to amorphous oxide ultrathin layers and the challenges to be faced when dealing with these more complex systems is presented. Final remarks conclude the chapter.
2016
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Istituto per i Processi Chimico-Fisici - IPCF
978-3-319-28330-2
2d materials - theoretical modeling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/323186
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact