Electron-filtering compound buffer layers (EF-CBLs) improve charge extraction in organic photovoltaic cells (OPVs) by blending an electron-conducting fullerene with a wide energy gap exciton-blocking molecule. It is found that devices with EF-CBLs with high glass transition temperatures and a low crystallization rate produce highly stable morphologies and devices. The most stable OPVs employ 1:1 2,2?,2?-(1,3,5-benzenetriyl tris-[1-phenyl-1H-benzimidazole] TPBi:C70 buffers that lose <20% of their initial power conversion efficiency of 6.6 ± 0.6% after 2700 h under continuous simulated AM1.5G illumination, and show no significant degradation after 100 days of outdoor aging. When exposed to 100-sun (100 kW m-2) concentrated solar illumination for 5 h, their power conversion efficiencies decrease by <8%. Moreover, it is found that the reliability of the devices employing stable EF-CBLs has either reduced or no dependence on operating temperature up to 130 °C compared with BPhen:C60 devices whose fill factors show thermally activated degradation. The robustness of TPBi:C70 devices under extreme aging conditions including outdoor exposure, high temperature, and concentrated illumination is promising for the future of OPV as a stable solar cell technology.

Reliability of Small Molecule Organic Photovoltaics with Electron-Filtering Compound Buffer Layers

Zanotti G;
2016

Abstract

Electron-filtering compound buffer layers (EF-CBLs) improve charge extraction in organic photovoltaic cells (OPVs) by blending an electron-conducting fullerene with a wide energy gap exciton-blocking molecule. It is found that devices with EF-CBLs with high glass transition temperatures and a low crystallization rate produce highly stable morphologies and devices. The most stable OPVs employ 1:1 2,2?,2?-(1,3,5-benzenetriyl tris-[1-phenyl-1H-benzimidazole] TPBi:C70 buffers that lose <20% of their initial power conversion efficiency of 6.6 ± 0.6% after 2700 h under continuous simulated AM1.5G illumination, and show no significant degradation after 100 days of outdoor aging. When exposed to 100-sun (100 kW m-2) concentrated solar illumination for 5 h, their power conversion efficiencies decrease by <8%. Moreover, it is found that the reliability of the devices employing stable EF-CBLs has either reduced or no dependence on operating temperature up to 130 °C compared with BPhen:C60 devices whose fill factors show thermally activated degradation. The robustness of TPBi:C70 devices under extreme aging conditions including outdoor exposure, high temperature, and concentrated illumination is promising for the future of OPV as a stable solar cell technology.
2016
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
Degradation
Solar cells
Thermal activation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/323350
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? ND
social impact