The investigation of community structures in networks is an important issue in many domains and disciplines. In this paper we present a new class of local and fast algorithms which incorporate a quantitative definition of community. In this way the algorithms for the identification of the community structure become fully self-contained and one does not need additional non-topological information in order to evaluate the accuracy of the results. The new algorithms are tested on artificial and real-world graphs. In particular we show how the new algorithms apply to a network of scientific collaborations both in the unweighted and in the weighted version. Moreover we discuss the applicability of these algorithms to other non-social networks and we present preliminary results about the detection of community structures in networks of interacting proteins.
Self-contained algorithms to detect communities in networks
Claudio Castellano;Federico Cecconi;Vittorio Loreto;Domenico Parisi;
2004
Abstract
The investigation of community structures in networks is an important issue in many domains and disciplines. In this paper we present a new class of local and fast algorithms which incorporate a quantitative definition of community. In this way the algorithms for the identification of the community structure become fully self-contained and one does not need additional non-topological information in order to evaluate the accuracy of the results. The new algorithms are tested on artificial and real-world graphs. In particular we show how the new algorithms apply to a network of scientific collaborations both in the unweighted and in the weighted version. Moreover we discuss the applicability of these algorithms to other non-social networks and we present preliminary results about the detection of community structures in networks of interacting proteins.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_46885-doc_65151.pdf
solo utenti autorizzati
Descrizione: Articolo pubblicato
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
275.21 kB
Formato
Adobe PDF
|
275.21 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


