In recent years, the interest in near-infrared (NIR) emitting molecules and materials has increased significantly, thanks to the expansion of the potential technological applications of NIR luminescence in several areas such as bioimaging, sensors, telecommunications, and night-vision displays. This progress has been facilitated by the development of new synthetic routes for the targeted functionalization and expansion of established molecular frameworks and by the availability of simpler and cheaper NIR detectors. Herein, we present recent developments on three major classes of systems-i.e., organic dyes, porphyrinoids, and transition metal complexes-exhibiting the maximum of the emission band at lambda>700nm. In particular, we focus on the design strategies that may increase the luminescence efficiency, while pushing the emission band more deeply in the NIR region. This overview suggests that further progress can be achieved in the near future, with enhanced availability of more robust, stronger, and cheaper NIR luminophores.

The Rise of Near-Infrared Emitters: Organic Dyes, Porphyrinoids, and Transition Metal Complexes.

Barbieri Andrea;Bandini Elisa;Monti Filippo;Armaroli Nicola
2016

Abstract

In recent years, the interest in near-infrared (NIR) emitting molecules and materials has increased significantly, thanks to the expansion of the potential technological applications of NIR luminescence in several areas such as bioimaging, sensors, telecommunications, and night-vision displays. This progress has been facilitated by the development of new synthetic routes for the targeted functionalization and expansion of established molecular frameworks and by the availability of simpler and cheaper NIR detectors. Herein, we present recent developments on three major classes of systems-i.e., organic dyes, porphyrinoids, and transition metal complexes-exhibiting the maximum of the emission band at lambda>700nm. In particular, we focus on the design strategies that may increase the luminescence efficiency, while pushing the emission band more deeply in the NIR region. This overview suggests that further progress can be achieved in the near future, with enhanced availability of more robust, stronger, and cheaper NIR luminophores.
2016
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
NIR Emitters
Organic dyes
porphyrinoids
Transition Metal Complexes
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/323448
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 68
  • ???jsp.display-item.citation.isi??? ND
social impact