The combination of mass-production compatible coating techniques and environmentally friendly solvents to process bulk heterojunction solar cells represents a key issue to scale up this technology. In this work we demonstrate that using a benchmark polymer HBG-1 blended with PC61BM, the replacement of a common chlorinated processing solvent (orthodichlorobenzene) with a non-chlorinated analogous (o-xylene) not only allows the fabrication of blade-coated bulk heterojunction devices with identical photovoltaic performance, but also determines a great enhancement of the resulting thermal stability. Thermal degradation tests were carried out in inert atmosphere, by keeping the solar cells onto a hot plate at 85 °C and monitoring their OPV performance. In parallel, the morphological changes of the active layers induced by thermal stress are investigated by combining two complementary light-based imaging techniques, laser scanning confocal and photocurrent microscopy, which offer the great advantage to simultaneously study on complete devices the blend morphology and the electrical properties, point-by-point, of the active layer even in regions unlikely accessible (e.g. the active area under the top electrode) using other techniques. As a result, we found that solar cells processed from a non-chlorinated based solvent, in comparison to an analogous reference system, exhibit a different evolution of the resulting BHJ morphology during thermal ageing, in perfect agreement with the corresponding photovoltaic responses.

Impact of environmentally friendly processing on polymer solar cells: Performance, thermal stability and morphological study by imaging techniques

Margherita Bolognesi;Mario Prosa;Marta Tessarolo;Stefano Toffanin;Michele Muccini;Mirko Seri
2016

Abstract

The combination of mass-production compatible coating techniques and environmentally friendly solvents to process bulk heterojunction solar cells represents a key issue to scale up this technology. In this work we demonstrate that using a benchmark polymer HBG-1 blended with PC61BM, the replacement of a common chlorinated processing solvent (orthodichlorobenzene) with a non-chlorinated analogous (o-xylene) not only allows the fabrication of blade-coated bulk heterojunction devices with identical photovoltaic performance, but also determines a great enhancement of the resulting thermal stability. Thermal degradation tests were carried out in inert atmosphere, by keeping the solar cells onto a hot plate at 85 °C and monitoring their OPV performance. In parallel, the morphological changes of the active layers induced by thermal stress are investigated by combining two complementary light-based imaging techniques, laser scanning confocal and photocurrent microscopy, which offer the great advantage to simultaneously study on complete devices the blend morphology and the electrical properties, point-by-point, of the active layer even in regions unlikely accessible (e.g. the active area under the top electrode) using other techniques. As a result, we found that solar cells processed from a non-chlorinated based solvent, in comparison to an analogous reference system, exhibit a different evolution of the resulting BHJ morphology during thermal ageing, in perfect agreement with the corresponding photovoltaic responses.
2016
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
organic solar cell
non-chlorinated solvent
thermal stability
morphlogical changes
light-based imaging technique
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/323560
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 23
social impact