A priori estimates for solutions to homogeneous Neumann problems for uniformly elliptic equa- tions in open subsets \Omega­ of IR^n are established when the datum on right-hand side is in the limiting space L^{n/2}(\Omega), or, more generally, in the Lorentz spaces L^{n/2, q}(\Omega). These estimates are optimal as far as either constants or norms are concerned.

Optimal bounds for solutions to Neumann problems in limiting cases

Alberico A;
2005

Abstract

A priori estimates for solutions to homogeneous Neumann problems for uniformly elliptic equa- tions in open subsets \Omega­ of IR^n are established when the datum on right-hand side is in the limiting space L^{n/2}(\Omega), or, more generally, in the Lorentz spaces L^{n/2, q}(\Omega). These estimates are optimal as far as either constants or norms are concerned.
2005
Istituto Applicazioni del Calcolo ''Mauro Picone''
Boundary value problems for second-order elliptic equations
A priori estimates
Spaces of measurable functions
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/32391
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact