Here we first propose a fast, one-shot, non-Bayesian method which performs a numerical synthesis of a moving aperture in order to reduce the noise in Digital Holography without prior information on its statistics. Starting from one single hologram capture, multiple uncorrelated reconstructions are provided by random sparse resampling masks, which can be incoherently averaged. Thus, the problem of the setup complexity introduced by multiple recordings gets solved. Besides, at the scope of performing DH display using a SLM, it is highly required to operate directly on the hologram, in order to obtain its denoised version without losing the coherence between amplitude and phase information. We then move a step forward, showing a novel encoding formula allowing us to directly synthesize denoised holograms to be optically displayed by SLMs.

Hologram Encoding strategies for non-Bayesian noise suppression in Digital Holography reconstructions and optical display

Bianco V;Memmolo P;Finizio A;Paturzo M;Ferraro P
2016

Abstract

Here we first propose a fast, one-shot, non-Bayesian method which performs a numerical synthesis of a moving aperture in order to reduce the noise in Digital Holography without prior information on its statistics. Starting from one single hologram capture, multiple uncorrelated reconstructions are provided by random sparse resampling masks, which can be incoherently averaged. Thus, the problem of the setup complexity introduced by multiple recordings gets solved. Besides, at the scope of performing DH display using a SLM, it is highly required to operate directly on the hologram, in order to obtain its denoised version without losing the coherence between amplitude and phase information. We then move a step forward, showing a novel encoding formula allowing us to directly synthesize denoised holograms to be optically displayed by SLMs.
2016
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI
(090.1995) Digital holography
(090.4220) Multiplex holography
(090.2870) Holographic display
(100.3010) Image reconstruction techniques
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/323943
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact