In order to effectively plan both preparedness and response to emergency situations it is necessary to access and analyse timely information on plausible scenarios of occurrence of ongoing events. Scenario maps representing the estimated susceptibility, hazard or risk of occurrence of an event on a territory are hardly generated real time. In fact the application of physical or statistical models using environmental parameters representing current dynamic conditions is time consuming on low cost hardware equipment. To cope with this practical issue we propose an off line generation of scenario maps under diversified environmental dynamic parameters, and a geo-Spatial Data Infrastructure (SDI) to allow people in charge of emergency preparedness and response activities to flexibly discover, retrieve, fuse and visualize the most plausible scenarios that may happen given some ongoing or forecasted dynamic conditions influencing the event. The novelty described in this chapter is related with both the ability to interpret flexible queries in order to retrieve risk scenario maps that are related to the current situation and to show the most plausible worst and best scenarios that may occur in each elementary area of the territory. Although, the SDI proposal has been conceived and designed to support the management of distinct natural and man-made risks, in the proof of concept prototypal implementation the scenarios maps target wild fire events.

A Geo-Spatial Data Infrastructure for Flexible Discovery, Retrieval and Fusion of Scenario Maps in Preparedness of Emergency

Bordogna;Gloria;Sterlacchini;Simone;Cappellini;Giacomo;Mangioni;Elisabetta;
2017

Abstract

In order to effectively plan both preparedness and response to emergency situations it is necessary to access and analyse timely information on plausible scenarios of occurrence of ongoing events. Scenario maps representing the estimated susceptibility, hazard or risk of occurrence of an event on a territory are hardly generated real time. In fact the application of physical or statistical models using environmental parameters representing current dynamic conditions is time consuming on low cost hardware equipment. To cope with this practical issue we propose an off line generation of scenario maps under diversified environmental dynamic parameters, and a geo-Spatial Data Infrastructure (SDI) to allow people in charge of emergency preparedness and response activities to flexibly discover, retrieve, fuse and visualize the most plausible scenarios that may happen given some ongoing or forecasted dynamic conditions influencing the event. The novelty described in this chapter is related with both the ability to interpret flexible queries in order to retrieve risk scenario maps that are related to the current situation and to show the most plausible worst and best scenarios that may occur in each elementary area of the territory. Although, the SDI proposal has been conceived and designed to support the management of distinct natural and man-made risks, in the proof of concept prototypal implementation the scenarios maps target wild fire events.
2017
Istituto per la Dinamica dei Processi Ambientali - IDPA - Sede Venezia
Istituto di Geologia Ambientale e Geoingegneria - IGAG
Istituto per il Rilevamento Elettromagnetico dell'Ambiente - IREA
978-3-319-40314-4
fuzzy operators
emergency management
fuzzy geospatial database
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/323962
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact