Digital environmental data are becoming commonplace and the amount of information they provide is huge, yet complex to process, due to the size, variety, and dynamic nature of the data captured by sensing devices. The paper discusses an evaluation framework for comparing methods to approximate observed rain data, in real conditions of sparsity of the observations. The novelty brought by this experimental study stands in the geographical area and heterogeneity of the data used for evaluation, aspects which challenge all approximation methods. The Liguria region, located in the north-west of Italy, is a complex area for the orography and the closeness to the sea, which cause complex hydro-meteorological events. The observed rain data are highly heterogeneous: two data sets come from measured rain gathered from two different rain gauge networks, with different characteristics and spatial distribution over the Liguria region; the third data set come from weather radar, with a more regular coverage of the same region but a different veracity. Finally, another novelty of the paper is brought by the proposal of an application-oriented perspective on the comparison. The approximation models the rain field, whose maxima and their evolution is essential for an effective monitoring of meteorological events. Therefore, we adapt a storm tracking technique to the analysis of the displacement of maxima computed by the different methods.

Comparing methods for the approximation of rainfall fields in environmental applications

A Cerri;S Pittaluga;S Biasotti;D Sobrero;M Spagnuolo
2016

Abstract

Digital environmental data are becoming commonplace and the amount of information they provide is huge, yet complex to process, due to the size, variety, and dynamic nature of the data captured by sensing devices. The paper discusses an evaluation framework for comparing methods to approximate observed rain data, in real conditions of sparsity of the observations. The novelty brought by this experimental study stands in the geographical area and heterogeneity of the data used for evaluation, aspects which challenge all approximation methods. The Liguria region, located in the north-west of Italy, is a complex area for the orography and the closeness to the sea, which cause complex hydro-meteorological events. The observed rain data are highly heterogeneous: two data sets come from measured rain gathered from two different rain gauge networks, with different characteristics and spatial distribution over the Liguria region; the third data set come from weather radar, with a more regular coverage of the same region but a different veracity. Finally, another novelty of the paper is brought by the proposal of an application-oriented perspective on the comparison. The approximation models the rain field, whose maxima and their evolution is essential for an effective monitoring of meteorological events. Therefore, we adapt a storm tracking technique to the analysis of the displacement of maxima computed by the different methods.
2016
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Surface approximation
Precipitation analysis
Storm tracking
File in questo prodotto:
File Dimensione Formato  
prod_359943-doc_118152.pdf

solo utenti autorizzati

Descrizione: Comparing methods for the approximation of rainfall fields in environmental applications
Dimensione 11.3 MB
Formato Adobe PDF
11.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/324006
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact