Our general platform integrating time-independent and time-dependent evaluations of vibronic effects at the harmonic level for different kinds of absorption and emission one-photon, conventional and chiral spectroscopies has been extended to support various sets of internal coordinates. Thanks to the implementation of analytical first and second derivatives of different internal coordinates with respect to cartesian ones, both vertical and adiabatic models are available, with the inclusion of mode mixing and, possibly, Herzberg-Teller contributions. Furthermore, all supported non-redundant sets of coordinates are built from a fully automatized algorithm using only a primitive redundant set derived from a bond order-based molecular topology. Together with conventional stretching, bending, and torsion coordinates, the availability of additional coordinates (including linear and out-of-plane bendings) allows a proper treatment of specific systems, including, for instance, inter-molecular hydrogen bridges. A number of case studies are analysed, showing that cartesian and internal coordinates are nearly equivalent for semi-rigid systems not experiencing significant geometry distortions between initial and final electronic states. At variance, delocalized (possibly weighted) internal coordinates become much more effective than their cartesian counterparts for flexible systems and/or in the presence of significant geometry distortions accompanying electronic transitions.

General formulation of vibronic spectroscopy in internal coordinates

Bloino J;
2016

Abstract

Our general platform integrating time-independent and time-dependent evaluations of vibronic effects at the harmonic level for different kinds of absorption and emission one-photon, conventional and chiral spectroscopies has been extended to support various sets of internal coordinates. Thanks to the implementation of analytical first and second derivatives of different internal coordinates with respect to cartesian ones, both vertical and adiabatic models are available, with the inclusion of mode mixing and, possibly, Herzberg-Teller contributions. Furthermore, all supported non-redundant sets of coordinates are built from a fully automatized algorithm using only a primitive redundant set derived from a bond order-based molecular topology. Together with conventional stretching, bending, and torsion coordinates, the availability of additional coordinates (including linear and out-of-plane bendings) allows a proper treatment of specific systems, including, for instance, inter-molecular hydrogen bridges. A number of case studies are analysed, showing that cartesian and internal coordinates are nearly equivalent for semi-rigid systems not experiencing significant geometry distortions between initial and final electronic states. At variance, delocalized (possibly weighted) internal coordinates become much more effective than their cartesian counterparts for flexible systems and/or in the presence of significant geometry distortions accompanying electronic transitions.
2016
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
vibronic spectroscopy; internal coordinates
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/324103
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? ND
social impact