The temperature dependence of the rate constants in radiative and nonradiative decays from excited electronic states has been studied using a time-dependent correlation function approach in the framework of the adiabatic representation and the harmonic oscillator approximation. The present work analyzes the vibrational aspect of the processes, which gives rise to the temperature dependence, with the inclusion of mode-mixing, as well as of frequency change effects. The temperature dependence of the rate constants shows a contrasting nature, depending on whether the process has been addressed within the Franck-Condon approximation or beyond it. The calculation of the Duschinsky matrix and the shift vector between the normal modes of the two states can be done in Cartesian and/or internal coordinates, depending on the flexibility of the investigated molecule. A new computational code has been developed to calculate the rates of intersystem crossing, internal conversion, and fluorescence for selected molecules as functions of temperature.

Temperature Dependence of Radiative and Nonradiative Rates from Time-Dependent Correlation Function Methods

Bloino J;
2016

Abstract

The temperature dependence of the rate constants in radiative and nonradiative decays from excited electronic states has been studied using a time-dependent correlation function approach in the framework of the adiabatic representation and the harmonic oscillator approximation. The present work analyzes the vibrational aspect of the processes, which gives rise to the temperature dependence, with the inclusion of mode-mixing, as well as of frequency change effects. The temperature dependence of the rate constants shows a contrasting nature, depending on whether the process has been addressed within the Franck-Condon approximation or beyond it. The calculation of the Duschinsky matrix and the shift vector between the normal modes of the two states can be done in Cartesian and/or internal coordinates, depending on the flexibility of the investigated molecule. A new computational code has been developed to calculate the rates of intersystem crossing, internal conversion, and fluorescence for selected molecules as functions of temperature.
2016
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Time-Dependent Correlation Function Methods
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/324104
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? ND
social impact