This article presents an approach for the efficient and transparent parallelization of a large class of swarm algorithms, specifically those where the multiagent paradigm is used to implement the functionalities of bioinspired entities, such as ants and birds. Parallelization is achieved by partitioning the space on which agents operate onto multiple regions and assigning each region to a different computing node. Data consistency and conflict issues, which can arise when several agents concurrently access shared data, are handled using a purposely developed notion of logical time. This approach enables a transparent porting onto parallel/distributed architectures, as the developer is only in charge of defining the behavior of the agents, without having to cope with issues related to parallel programming and performance optimization. The approach has been evaluated for a very popular swarm algorithm, the ant-based spatial clustering and sorting of items, and results show good performance and scalability.

Transparent and Efficient Parallelization of Swarm Algorithms

Cicirelli Franco;Forestiero Agostino;Giordano Andrea;Mastroianni Carlo
2016

Abstract

This article presents an approach for the efficient and transparent parallelization of a large class of swarm algorithms, specifically those where the multiagent paradigm is used to implement the functionalities of bioinspired entities, such as ants and birds. Parallelization is achieved by partitioning the space on which agents operate onto multiple regions and assigning each region to a different computing node. Data consistency and conflict issues, which can arise when several agents concurrently access shared data, are handled using a purposely developed notion of logical time. This approach enables a transparent porting onto parallel/distributed architectures, as the developer is only in charge of defining the behavior of the agents, without having to cope with issues related to parallel programming and performance optimization. The approach has been evaluated for a very popular swarm algorithm, the ant-based spatial clustering and sorting of items, and results show good performance and scalability.
2016
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
Swarm algorithms; ant-based clustering and sorting; logical time
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/324175
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact