The availability of more than thirty years of historical satellite data is a valuable source which could be used as an alternative to the sparse in-situ data. We developed a new homogenised time series of daily day time Lake Surface Water Temperature (LSWT) over the last thirty years (1986-2015) at a spatial resolution of 1km from thirteen polar orbiting satellites. The new homogenisation procedure implemented in this study corrects for the different acquisition times of the satellites standardizing the derived LSWT to 12:00 UTC. In this study, we developed new time series of LSWT for five large lakes in Italy and evaluated the product with in-situ data from the respective lakes. Furthermore, we estimated the long-term annual and summer trends, the temporal coherence of mean LSWT between the lakes, and studied the intra-annual variations and long-term trends from the newly developed LSWT time series. We found a regional warming trend at a rate of 0.017°Cyr(-1) annually and 0.032°Cyr(-1) during summer. Mean annual and summer LSWT temporal patterns in these lakes were found to be highly coherent. Amidst the reported rapid warming of lakes globally, it is important to understand the long-term variations of surface temperature at a regional scale. This study contributes a new method to derive long-term accurate LSWT for lakes with sparse in-situ data thereby facilitating understanding of regional level changes in lake's surface temperature.

Warming trends of perialpine lakes from homogenised time series of historical satellite and in-situ data.

Bresciani Mariano;Morabito Giuseppe;
2016

Abstract

The availability of more than thirty years of historical satellite data is a valuable source which could be used as an alternative to the sparse in-situ data. We developed a new homogenised time series of daily day time Lake Surface Water Temperature (LSWT) over the last thirty years (1986-2015) at a spatial resolution of 1km from thirteen polar orbiting satellites. The new homogenisation procedure implemented in this study corrects for the different acquisition times of the satellites standardizing the derived LSWT to 12:00 UTC. In this study, we developed new time series of LSWT for five large lakes in Italy and evaluated the product with in-situ data from the respective lakes. Furthermore, we estimated the long-term annual and summer trends, the temporal coherence of mean LSWT between the lakes, and studied the intra-annual variations and long-term trends from the newly developed LSWT time series. We found a regional warming trend at a rate of 0.017°Cyr(-1) annually and 0.032°Cyr(-1) during summer. Mean annual and summer LSWT temporal patterns in these lakes were found to be highly coherent. Amidst the reported rapid warming of lakes globally, it is important to understand the long-term variations of surface temperature at a regional scale. This study contributes a new method to derive long-term accurate LSWT for lakes with sparse in-situ data thereby facilitating understanding of regional level changes in lake's surface temperature.
2016
Istituto per il Rilevamento Elettromagnetico dell'Ambiente - IREA
Istituto di Ricerca sugli Ecosistemi Terrestri - IRET
remote sensing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/324316
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact