How many of your friends, with whom you enjoy spending some time, live close by? How many people are at your reach, with whom you could have a nice conversation? We introduce a measure of enjoyability that may be the basis for a new class of location-based services aimed at maximizing the likelihood that two persons, or a group of people, would enjoy spending time together. Our enjoyability takes into account both topic similarity between two users and the users' tendency to connect to people with similar or dissimilar interest. We computed the enjoyability on two datasets of geo-located tweets, and we reasoned on the applicability of the obtained results for producing friend recommendations. We aim at suggesting couples of users which are not friends yet, but which are frequently co-located and maximize our enjoyability measure. By taking into account the spatial dimension, we show how 50% of users may find at least one enjoyable person within 10km of their two most visited locations. Our results are encouraging, and open the way for a new class of recommender systems based on enjoyability.

Where is my next friend? Recommending enjoyable profiles in location based services

Guidotti R;
2016

Abstract

How many of your friends, with whom you enjoy spending some time, live close by? How many people are at your reach, with whom you could have a nice conversation? We introduce a measure of enjoyability that may be the basis for a new class of location-based services aimed at maximizing the likelihood that two persons, or a group of people, would enjoy spending time together. Our enjoyability takes into account both topic similarity between two users and the users' tendency to connect to people with similar or dissimilar interest. We computed the enjoyability on two datasets of geo-located tweets, and we reasoned on the applicability of the obtained results for producing friend recommendations. We aim at suggesting couples of users which are not friends yet, but which are frequently co-located and maximize our enjoyability measure. By taking into account the spatial dimension, we show how 50% of users may find at least one enjoyable person within 10km of their two most visited locations. Our results are encouraging, and open the way for a new class of recommender systems based on enjoyability.
2016
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-3-319-30568-4
Mobility and Social Behavior
Database Applications
Data Mining
File in questo prodotto:
File Dimensione Formato  
prod_357202-doc_116506.pdf

solo utenti autorizzati

Descrizione: Where is my next friend?
Tipologia: Versione Editoriale (PDF)
Dimensione 714.88 kB
Formato Adobe PDF
714.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/324341
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact