Drought is the major environmental stress that adversely affects crop productivity in the Mediterranean region. Adopting water saving strategies, such as deficit irrigation or even no irrigation (rain-fed) and using drought-tolerant genotypes and/or landraces may represent effective tools to save water without substantial reduction of yield. An experiment was conducted in two consecutive growing seasons (2013 and 2014), to assess soil water content and matric potential of soil, physiological parameters, growth, yield and fruit quality of two Italian long-storage tomato landraces: "Locale di Salina 6" (LS; 2013 and 2014) and "Piennolo del Vesuvio" (PV; 2014) under rain-fed (RF) and full irrigation (FI) conditions. Leaf water potential, CO2 assimilation, stomatal conductance, photosynthetic efficiency and growth were moderately impaired under rain-fed conditions, while intrinsic water use efficiency slightly increased. The marketable yield of LS in both growing seasons, and PV in 2014 under RF conditions was slightly reduced (by 6%) as compared with the FI treatment, indicating a drought tolerance of both landraces. In the 2014 experiment, the marketable yield was significantly higher by 55% in PV than in LS landrace. When averaged over landraces, the fruit quality traits in particular fruit dry matter, total soluble solids and total ascorbic acid contents increased by 21, 33 and 55%, respectively under RF compared to FI. The results can play an important role in selecting tolerant genotypes for use under limited water supply in order to save water and improve fruit quality without affecting the crop productivity.

Agronomical, physiological and fruit quality responses of two Italian long-storage tomato landraces under rain-fed and full irrigation conditions

Guida G;Mistretta C;Buonomo R;De Mascellis R;Albrizio R;Giorio P
2017

Abstract

Drought is the major environmental stress that adversely affects crop productivity in the Mediterranean region. Adopting water saving strategies, such as deficit irrigation or even no irrigation (rain-fed) and using drought-tolerant genotypes and/or landraces may represent effective tools to save water without substantial reduction of yield. An experiment was conducted in two consecutive growing seasons (2013 and 2014), to assess soil water content and matric potential of soil, physiological parameters, growth, yield and fruit quality of two Italian long-storage tomato landraces: "Locale di Salina 6" (LS; 2013 and 2014) and "Piennolo del Vesuvio" (PV; 2014) under rain-fed (RF) and full irrigation (FI) conditions. Leaf water potential, CO2 assimilation, stomatal conductance, photosynthetic efficiency and growth were moderately impaired under rain-fed conditions, while intrinsic water use efficiency slightly increased. The marketable yield of LS in both growing seasons, and PV in 2014 under RF conditions was slightly reduced (by 6%) as compared with the FI treatment, indicating a drought tolerance of both landraces. In the 2014 experiment, the marketable yield was significantly higher by 55% in PV than in LS landrace. When averaged over landraces, the fruit quality traits in particular fruit dry matter, total soluble solids and total ascorbic acid contents increased by 21, 33 and 55%, respectively under RF compared to FI. The results can play an important role in selecting tolerant genotypes for use under limited water supply in order to save water and improve fruit quality without affecting the crop productivity.
2017
Istituto per i Sistemi Agricoli e Forestali del Mediterraneo - ISAFOM
Istituto per la Valorizzazione del Legno e delle Specie Arboree - IVALSA - Sede Sesto Fiorentino
Leaf gas exchanges
Soil water content
Solanum lycopersicum L
Water stress
Intrinsic water use efficiency
File in questo prodotto:
File Dimensione Formato  
prod_361054-doc_118658.pdf

solo utenti autorizzati

Descrizione: Agronomical, physiological and fruit quality responses of two Italian long-storage tomato landraces under rain-fed and full irrigation
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/324440
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? ND
social impact