Aim: This work compares the synthesis, heating capability, cellular internalization and thermoablation capacity of two different types of anisotropic gold nanoparticles: gold nanorods (NRs) and nanoprisms (NPrs). Methods: Both particles possess surface plasmon resonance absorption bands in the near-IR, and their heating efficiency upon irradiation with a continuous near-IR laser (1064 nm) was evaluated. The cellular internalization, location and toxicity of these PEG-stabilized NPrs and NRs were then assessed in the Vero cell line by transmission electron microscopy and inductively coupled plasma mass spectrometry analysis, and their ability to induce cell death upon laser irradiation was then evaluated and compared. Results & conclusion: Although both nanoparticles are highly efficient photothermal converters, NRs possessed a more efficient heating capability, yet the in vitro thermoablation studies clearly demonstrated that NPrs were more effective at inducing cell death through photothermal ablation due to their greater cellular internalization.

Gold nanoprism-nanorod face off: Comparing the heating efficiency, cellular internalization and thermoablation capacity

2016

Abstract

Aim: This work compares the synthesis, heating capability, cellular internalization and thermoablation capacity of two different types of anisotropic gold nanoparticles: gold nanorods (NRs) and nanoprisms (NPrs). Methods: Both particles possess surface plasmon resonance absorption bands in the near-IR, and their heating efficiency upon irradiation with a continuous near-IR laser (1064 nm) was evaluated. The cellular internalization, location and toxicity of these PEG-stabilized NPrs and NRs were then assessed in the Vero cell line by transmission electron microscopy and inductively coupled plasma mass spectrometry analysis, and their ability to induce cell death upon laser irradiation was then evaluated and compared. Results & conclusion: Although both nanoparticles are highly efficient photothermal converters, NRs possessed a more efficient heating capability, yet the in vitro thermoablation studies clearly demonstrated that NPrs were more effective at inducing cell death through photothermal ablation due to their greater cellular internalization.
2016
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI
cellular internalization
hyperthermia
near-IR
photothermal cell ablation
plasmonic gold nanoparticles
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/324460
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? ND
social impact