The coevolution theory of the origin of the genetic code maintains that the biosynthetic relationships between amino acids co-evolved with the genetic code organization. In other words, the metabolism of amino acids co-evolved with the organization of the genetic code because the biosynthetic pathways of amino acids occurred on tRNA-like molecules. Thus, a heterotrophic origin of amino acids-also only of those involved in the early phase of the structuring of the genetic code-would seem to contradict the main postulate of the coevolution theory. As a matter of fact, this origin not being linked to the metabolism of amino acids in any way-being taken from a physical setting-would seem to remove the possibility that this metabolism had instead heavily contributed to the structuring of the genetic code. Therefore, I have analyzed the structure of the genetic code and mechanisms that brought to its structuring for understanding if the coevolution theory is compatible with autotrophic or heterotrophic conditions. One of the arguments was that an autotrophic origin of amino acids would have the advantage to be able to directly link their metabolism to the structure of the genetic code if-as hypothesized by the coevolution theory-the biosyntheses of amino acids occurred on tRNA-like molecules. Simultaneously, a heterotrophic origin would not have been able to link the metabolism of amino acids to the structure of the genetic code for the absence of a precise determinism of allocation of amino acids, that is to say of a clear mechanism-linked to tRNA-like molecules, for example-that would have determined the specific pattern observed in the genetic code of the biosynthetic relationships between amino acids. The conclusion is that an autotrophic origin of coded amino acids would seem to be the condition under which the genetic code originated.

An Autotrophic Origin for the Coded Amino Acids is Concordant with the Coevolution Theory of the Genetic Code.

Di Giulio;Massimo
2016

Abstract

The coevolution theory of the origin of the genetic code maintains that the biosynthetic relationships between amino acids co-evolved with the genetic code organization. In other words, the metabolism of amino acids co-evolved with the organization of the genetic code because the biosynthetic pathways of amino acids occurred on tRNA-like molecules. Thus, a heterotrophic origin of amino acids-also only of those involved in the early phase of the structuring of the genetic code-would seem to contradict the main postulate of the coevolution theory. As a matter of fact, this origin not being linked to the metabolism of amino acids in any way-being taken from a physical setting-would seem to remove the possibility that this metabolism had instead heavily contributed to the structuring of the genetic code. Therefore, I have analyzed the structure of the genetic code and mechanisms that brought to its structuring for understanding if the coevolution theory is compatible with autotrophic or heterotrophic conditions. One of the arguments was that an autotrophic origin of amino acids would have the advantage to be able to directly link their metabolism to the structure of the genetic code if-as hypothesized by the coevolution theory-the biosyntheses of amino acids occurred on tRNA-like molecules. Simultaneously, a heterotrophic origin would not have been able to link the metabolism of amino acids to the structure of the genetic code for the absence of a precise determinism of allocation of amino acids, that is to say of a clear mechanism-linked to tRNA-like molecules, for example-that would have determined the specific pattern observed in the genetic code of the biosynthetic relationships between amino acids. The conclusion is that an autotrophic origin of coded amino acids would seem to be the condition under which the genetic code originated.
2016
Istituto di Bioscienze e Biorisorse
HeterotrophyAutotrophyCoded amino acid autotrophic origin
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/324481
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact