Over recent years, in the automotive field, numerous performance and aesthetic innovations have been produced thanks to the development process of the manufacturing technologies gained mainly in the aerospace industrial context. The automotive industry is currently experiencing relevant technology changes in the design of the engines, transmission and total drivetrain, induced by increasing customer demand for fuel efficiency and more stringent government requirements in emissions and safety. One of the problems relating to environmental impact concerns the noise emitted by the vehicle, for which various solutions have been experimented: new and more resistant materials have been worked out in order to minimize noise pollution and the environmental impact of the vehicle, even at the end of the operating life of its components. Several research programs are currently running or recently terminated worldwide to explore the feasibility of smart materials. The increasingly dominant role of lightweight materials in many technological sectors is motivated by the multitude of benefits that they could offer like the weight optimization and the reduction of the fuel burn and noise levels. This research illustrates a solution as a response to those requirements, as well as being a response to the targets of comfort: a viscoelastic material, appointed to increase the damping of structures involved in vibro-acoustic phenomena generated in a vehicle. The performance of these innovative materials have been analyzed both from a numerical standpoint that experimental. Static mechanical properties and modal parameters carried out in the laboratory, pertinent to each configuration were arranged into a rational database for further studies on the vibro-acoustic behaviour of the coupled cavity-structure system. The main goal of this research project has been reached in the design, manufacturing and testing of an innovative viscoelastic prototype got out by the best compromise of structural and acoustic characteristics of pre-existing trim materials.

Design and testing of a prototype foam for lightweight technological applications

D Siano
2016

Abstract

Over recent years, in the automotive field, numerous performance and aesthetic innovations have been produced thanks to the development process of the manufacturing technologies gained mainly in the aerospace industrial context. The automotive industry is currently experiencing relevant technology changes in the design of the engines, transmission and total drivetrain, induced by increasing customer demand for fuel efficiency and more stringent government requirements in emissions and safety. One of the problems relating to environmental impact concerns the noise emitted by the vehicle, for which various solutions have been experimented: new and more resistant materials have been worked out in order to minimize noise pollution and the environmental impact of the vehicle, even at the end of the operating life of its components. Several research programs are currently running or recently terminated worldwide to explore the feasibility of smart materials. The increasingly dominant role of lightweight materials in many technological sectors is motivated by the multitude of benefits that they could offer like the weight optimization and the reduction of the fuel burn and noise levels. This research illustrates a solution as a response to those requirements, as well as being a response to the targets of comfort: a viscoelastic material, appointed to increase the damping of structures involved in vibro-acoustic phenomena generated in a vehicle. The performance of these innovative materials have been analyzed both from a numerical standpoint that experimental. Static mechanical properties and modal parameters carried out in the laboratory, pertinent to each configuration were arranged into a rational database for further studies on the vibro-acoustic behaviour of the coupled cavity-structure system. The main goal of this research project has been reached in the design, manufacturing and testing of an innovative viscoelastic prototype got out by the best compromise of structural and acoustic characteristics of pre-existing trim materials.
2016
Istituto Motori - IM - Sede Napoli
Automotive
Damping
Finite Element Model
Non-contact Measurement
Noise Vibration Harshness
Viscoelasticity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/324617
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact