Smartphones and other mobile devices are today pervasive across the globe. As an interesting side effect of the surge in mobile communications, mobile network operators can now easily collect a wealth of high-resolution data on the habits of large user populations. The information extracted from mobile network traffic data is very relevant in the context of population mapping: it provides a tool for the automatic and live estimation of population densities, overcoming the limitations of traditional data sources such as censuses and surveys. In this paper, we propose a new approach to infer population densities at urban scales, based on aggregated mobile network traffic metadata. Our approach allows estimating both static and dynamic populations, achieves a significant improvement in terms of accuracy with respect to state-of-the-art solutions in the literature, and is validated on different city scenarios.

Population estimation from mobile network traffic metadata

Fiore M
2016

Abstract

Smartphones and other mobile devices are today pervasive across the globe. As an interesting side effect of the surge in mobile communications, mobile network operators can now easily collect a wealth of high-resolution data on the habits of large user populations. The information extracted from mobile network traffic data is very relevant in the context of population mapping: it provides a tool for the automatic and live estimation of population densities, overcoming the limitations of traditional data sources such as censuses and surveys. In this paper, we propose a new approach to infer population densities at urban scales, based on aggregated mobile network traffic metadata. Our approach allows estimating both static and dynamic populations, achieves a significant improvement in terms of accuracy with respect to state-of-the-art solutions in the literature, and is validated on different city scenarios.
2016
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
Dynamic population estimation
Mobile traffic data analysis
Cellular networks
Demographics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/325048
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? ND
social impact