In nanoparticle systems consisting of two magnetic materials (bi-magnetic nanoparticles or nanoparticles embedded in a magnetic matrix), there is a constantly growing interest in the investigation of the interplay between interparticle interactions and the nanoparticle-matrix interface exchange coupling, because of its enormous impact on a number of technological applications. The understanding of the mechanisms of such interplay is a great challenge, as it would allow controlling equilibrium and non-equilibrium magnetization dynamics of exchange coupled nanoparticles systems and finely tuning their anisotropy. Here, we provide evidence that this interplay leads to a collective superspin glass (SSG) behavior in a system of diluted ferromagnetic
Superspin glass state in a diluted nanoparticle system stabilized by interparticle interactions mediated by an antiferromagnetic matrix
Davide Peddis;Sara Laureti;Elisabetta Agostinelli;Dino Fiorani
2017
Abstract
In nanoparticle systems consisting of two magnetic materials (bi-magnetic nanoparticles or nanoparticles embedded in a magnetic matrix), there is a constantly growing interest in the investigation of the interplay between interparticle interactions and the nanoparticle-matrix interface exchange coupling, because of its enormous impact on a number of technological applications. The understanding of the mechanisms of such interplay is a great challenge, as it would allow controlling equilibrium and non-equilibrium magnetization dynamics of exchange coupled nanoparticles systems and finely tuning their anisotropy. Here, we provide evidence that this interplay leads to a collective superspin glass (SSG) behavior in a system of diluted ferromagneticI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.