Current OpenFlow specification is unable to set the service rate of the queues inside OpenFlow devices. This lack does not allow to apply most algorithms for the satisfaction of Quality of Service requirements to new and established flows. In this paper we propose an alternative solution implemented through some modifications of Beacon, one popular SDN controller. It acts as follows: using 'almost'-real-time statistics from OpenFlow devices, Beacon will re-route flows on different queues to guarantee the observance of deadline requirements (e.g. the flow is still useful if, and only if, is completely received by a given time) and/or an efficient queue balancing in an OpenFlow SDN switch. Differently from the literature, we do not propose any new primitive or modification of the OpenFlow standard: our mechanism, implemented in the controller, works with regular OpenFlow devices. Our changes in the SDN controller will be the base for the design of a class of new re-routing algorithms able to guarantee deadline constraints and queue balancing without any modification of the OpenFlow specification, as well as, of OpenFlow devices.

BeaQoS: Quality of Service and Load Balancing Support in OpenFlow Environment

Mongelli;
2016

Abstract

Current OpenFlow specification is unable to set the service rate of the queues inside OpenFlow devices. This lack does not allow to apply most algorithms for the satisfaction of Quality of Service requirements to new and established flows. In this paper we propose an alternative solution implemented through some modifications of Beacon, one popular SDN controller. It acts as follows: using 'almost'-real-time statistics from OpenFlow devices, Beacon will re-route flows on different queues to guarantee the observance of deadline requirements (e.g. the flow is still useful if, and only if, is completely received by a given time) and/or an efficient queue balancing in an OpenFlow SDN switch. Differently from the literature, we do not propose any new primitive or modification of the OpenFlow standard: our mechanism, implemented in the controller, works with regular OpenFlow devices. Our changes in the SDN controller will be the base for the design of a class of new re-routing algorithms able to guarantee deadline constraints and queue balancing without any modification of the OpenFlow specification, as well as, of OpenFlow devices.
2016
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
OpenFlow
Packet loss
SDN
Traffic engineering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/325186
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact