We present the results of an extensive numerical exploration performed on the eccentricity growth in MEO associated with two possible end-of-life disposal strategies for GNSS satellites. The study calls attention to the existence of values of initial inclination, longitude of ascending node, and argument of perigee that are more advantageous in terms of long-term stability of the orbit. The important role of the initial epoch and a corresponding periodicity are also shown. The present investigation is influential in view of recent analytical and numerical developments on the chaotic nature of the region due to lunisolar perturbations, but also for the upcoming Galileo and BeiDou constellations.
A numerical investigation on the eccentricity growth of GNSS disposal orbits
Alessi EM;Rossi A;Valsecchi GB;
2016
Abstract
We present the results of an extensive numerical exploration performed on the eccentricity growth in MEO associated with two possible end-of-life disposal strategies for GNSS satellites. The study calls attention to the existence of values of initial inclination, longitude of ascending node, and argument of perigee that are more advantageous in terms of long-term stability of the orbit. The important role of the initial epoch and a corresponding periodicity are also shown. The present investigation is influential in view of recent analytical and numerical developments on the chaotic nature of the region due to lunisolar perturbations, but also for the upcoming Galileo and BeiDou constellations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.