The successful synthesis of nanoparticles of Fe-bearing kuramite, (Cu,Fe)3SnS4, is reported in this study. Nanocrystalline powders were obtained through a mild, environmentally friendly and scalable solvothermal approach, in a single run. The sample was the object of a multidisciplinary investigation, including X-ray diffraction and absorption, scanning electron microscopy and microanalysis, electron paramagnetic resonance, diffuse reflectance and M{\"o}ssbauer spectroscopy as well as SQUID magnetometry. The nanoparticles consist of pure Fe-bearing kuramite, exhibiting tetragonal structure. The valence state of the metal cations was assessed to be Cu+, Sn4+ and Fe3+. The material presents a band gap value of 1.6 eV, which is fully compatible with solar cell applications. The uptake of Fe by nanokuramite opens a compositional field where the physical properties can be tuned. We thus foster the application of Fe-bearing nanokuramite for photovoltaics and energy storage purposes.

Geomaterials related to photovoltaics: a nanostructured Fe-bearing kuramite, Cu3SnS4

D'Acapito F;Lavacchi A;Oberhauser W;
2016

Abstract

The successful synthesis of nanoparticles of Fe-bearing kuramite, (Cu,Fe)3SnS4, is reported in this study. Nanocrystalline powders were obtained through a mild, environmentally friendly and scalable solvothermal approach, in a single run. The sample was the object of a multidisciplinary investigation, including X-ray diffraction and absorption, scanning electron microscopy and microanalysis, electron paramagnetic resonance, diffuse reflectance and M{\"o}ssbauer spectroscopy as well as SQUID magnetometry. The nanoparticles consist of pure Fe-bearing kuramite, exhibiting tetragonal structure. The valence state of the metal cations was assessed to be Cu+, Sn4+ and Fe3+. The material presents a band gap value of 1.6 eV, which is fully compatible with solar cell applications. The uptake of Fe by nanokuramite opens a compositional field where the physical properties can be tuned. We thus foster the application of Fe-bearing nanokuramite for photovoltaics and energy storage purposes.
2016
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Istituto Officina dei Materiali - IOM -
[object Object
EPR
Fe-bearing kuramite
Mössbauer
Photovoltaics
XAS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/325419
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact