To achieve complete oxidation of ethanol (EOR) to CO2, higher operating temperatures (often called intermediate-T, 150-200 °C) and appropriate catalysts are required. We examine here titanium oxycarbide (hereafter TiOxCy) as a possible alternative to standard carbon-based supports to enhance the stability of the catalyst/support assembly at intermediate-T. To test this material as electrocatalyst support, a systematic study of its behavior under electrochemical conditions was carried out. To have a clear description of the chemical changes of TiOxCy induced by electrochemical polarization of the material, a special setup that allows the combination of X-ray photoelectron spectroscopy and electrochemical measurements was used. Subsequently, an electrochemical study was carried out on TiOxCy powders, both at room temperature and at 150 °C. The present study has revealed that TiOxCy is a sufficiently conductive material whose surface is passivated by a TiO2 film under working conditions, which prevents the full oxidation of the TiOxCy and can thus be considered a stable electrode material for EOR working conditions. This result has also been confirmed through density functional theory (DFT) calculations on a simplified model system. Furthermore, it has been experimentally observed that ethanol molecules adsorb on the TiOxCy surface, inhibiting its oxidation. This result has been confirmed by using in situ Fourier transform infrared spectroscopy (FTIRS). The adsorption of ethanol is expected to favor the EOR in the presence of suitable catalyst nanoparticles supported on TiOxCy.

Electrochemical Behavior of TiOxCy as Catalyst Support for Direct Ethanol Fuel Cells at Intermediate Temperature: From Planar Systems to Powders

Vittadini A;Bellini M;Lavacchi A;
2016

Abstract

To achieve complete oxidation of ethanol (EOR) to CO2, higher operating temperatures (often called intermediate-T, 150-200 °C) and appropriate catalysts are required. We examine here titanium oxycarbide (hereafter TiOxCy) as a possible alternative to standard carbon-based supports to enhance the stability of the catalyst/support assembly at intermediate-T. To test this material as electrocatalyst support, a systematic study of its behavior under electrochemical conditions was carried out. To have a clear description of the chemical changes of TiOxCy induced by electrochemical polarization of the material, a special setup that allows the combination of X-ray photoelectron spectroscopy and electrochemical measurements was used. Subsequently, an electrochemical study was carried out on TiOxCy powders, both at room temperature and at 150 °C. The present study has revealed that TiOxCy is a sufficiently conductive material whose surface is passivated by a TiO2 film under working conditions, which prevents the full oxidation of the TiOxCy and can thus be considered a stable electrode material for EOR working conditions. This result has also been confirmed through density functional theory (DFT) calculations on a simplified model system. Furthermore, it has been experimentally observed that ethanol molecules adsorb on the TiOxCy surface, inhibiting its oxidation. This result has been confirmed by using in situ Fourier transform infrared spectroscopy (FTIRS). The adsorption of ethanol is expected to favor the EOR in the presence of suitable catalyst nanoparticles supported on TiOxCy.
2016
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
DEFCs
electrochemical stability
intermediate-T
support
titanium oxycarbide
File in questo prodotto:
File Dimensione Formato  
prod_357889-doc_116946.pdf

solo utenti autorizzati

Descrizione: Electrochemical Behavior of TiOxCy as Catalyst Support ...
Tipologia: Documento in Post-print
Dimensione 3.05 MB
Formato Adobe PDF
3.05 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_357889-doc_186201.pdf

accesso aperto

Descrizione: Electrochemical Behavior of TiOxCy as Catalyst Support ...
Tipologia: Documento in Post-print
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/325596
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? ND
social impact