In this paper we present a general theoretical framework to study interacting electrons under the influence of an external time-periodic driving, such as a homogeneous laser field. This is performed through a true many-body calculation and the use of Floquet theory. In particular, we consider a linear atomic chain using the Hubbard model to describe the short-ranged Coulomb interactions between electrons, plus Cluster Perturbation Theory to embed the many-body exact solution for a finite system into both an extended and an infinite lattice. Due to the presence of the external time-periodic perturbation, the electronic problem can be mapped into the study of photon-dressed quasiparticles thanks to Floquet theorem, keeping into account of all the virtual processes (absorption and emission of photons by electrons) with the laser field. This leads to an extension of the many-body static theories to out-of-equilibrium systems. This theoretical approach allowed us to show how the electronic properties of the system can be controlled and tuned varying the laser parameters. Above all, an inverse insulator-to-metal transition can be obtained for the one dimensional infinite lattice, and edge localized states appear as a finite size effect in an extended truncated chain.

Theory of photon-driven correlated electrons in one dimension

Manghi F
2017

Abstract

In this paper we present a general theoretical framework to study interacting electrons under the influence of an external time-periodic driving, such as a homogeneous laser field. This is performed through a true many-body calculation and the use of Floquet theory. In particular, we consider a linear atomic chain using the Hubbard model to describe the short-ranged Coulomb interactions between electrons, plus Cluster Perturbation Theory to embed the many-body exact solution for a finite system into both an extended and an infinite lattice. Due to the presence of the external time-periodic perturbation, the electronic problem can be mapped into the study of photon-dressed quasiparticles thanks to Floquet theorem, keeping into account of all the virtual processes (absorption and emission of photons by electrons) with the laser field. This leads to an extension of the many-body static theories to out-of-equilibrium systems. This theoretical approach allowed us to show how the electronic properties of the system can be controlled and tuned varying the laser parameters. Above all, an inverse insulator-to-metal transition can be obtained for the one dimensional infinite lattice, and edge localized states appear as a finite size effect in an extended truncated chain.
2017
Istituto Nanoscienze - NANO
---
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/325970
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact