We probe the temperature- and pressure-dependent specific volume (v) and dipolar dynamics of the amorphous phase (in both the supercooled liquid and glass states) of the ternidazole drug (TDZ). Three molecular dynamic processes are identified by means of dielectric spectroscopy, namely the alpha relaxation, which vitrifies at the glass transition, a Johari-Goldstein beta(JG) relaxation, and an intramolecular process associated with the relaxation motion of the propanol chain of the TDZ molecule. The lineshapes of dielectric spectra characterized by the same relaxation time (isochronal spectra) are virtually identical, within the studied temperature and pressure ranges, so that the time-temperature- pressure superposition principle holds for TDZ. The alpha and beta(JG) relaxation times fulfil the density-dependent thermodynamic scaling: master curves result when they are plotted against the thermodynamic quantity Tv(gamma), with thermodynamic exponent gamma approximately equal to 2. These results show that the dynamics of TDZ, a system characterized by strong hydrogen bonding, is characterized by an isomorphism similar to that of van-der-Waals systems. The low value of gamma can be rationalized in terms of the relatively weak density-dependence of the dynamics of hydrogen-bonded systems.
Thermodynamic Scaling of the Dynamics of a Strongly Hydrogen-Bonded Glass-Former
Capaccioli;Simone;
2017
Abstract
We probe the temperature- and pressure-dependent specific volume (v) and dipolar dynamics of the amorphous phase (in both the supercooled liquid and glass states) of the ternidazole drug (TDZ). Three molecular dynamic processes are identified by means of dielectric spectroscopy, namely the alpha relaxation, which vitrifies at the glass transition, a Johari-Goldstein beta(JG) relaxation, and an intramolecular process associated with the relaxation motion of the propanol chain of the TDZ molecule. The lineshapes of dielectric spectra characterized by the same relaxation time (isochronal spectra) are virtually identical, within the studied temperature and pressure ranges, so that the time-temperature- pressure superposition principle holds for TDZ. The alpha and beta(JG) relaxation times fulfil the density-dependent thermodynamic scaling: master curves result when they are plotted against the thermodynamic quantity Tv(gamma), with thermodynamic exponent gamma approximately equal to 2. These results show that the dynamics of TDZ, a system characterized by strong hydrogen bonding, is characterized by an isomorphism similar to that of van-der-Waals systems. The low value of gamma can be rationalized in terms of the relatively weak density-dependence of the dynamics of hydrogen-bonded systems.File | Dimensione | Formato | |
---|---|---|---|
prod_378050-doc_127767.pdf
solo utenti autorizzati
Descrizione: Thermodynamic Scaling of the Dynamics of a Strongly Hydrogen-Bonded Glass-Former
Tipologia:
Versione Editoriale (PDF)
Dimensione
1.96 MB
Formato
Adobe PDF
|
1.96 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.