New insights on the amantadine resistance mechanism of the V27A mutant were obtained through the study of novel, easily accessible 4-(1- and 2-adamantyl)piperidines, identified as dual binders of the wild-type and V27A mutant M2 channels of influenza A virus. Their antiviral activity and channel blocking ability were determined using cell-based assays and two-electrode voltage clamp (TEVC) technique on M2 channels, respectively. In addition, electrophysiology experiments revealed two interesting findings: (i) these inhibitors display a different behavior against the wild-type versus V27A mutant A/M2 channels, and (ii) the compounds display antiviral activity when they have k(d) equal or smaller than 10(-6) while they do not exhibit antiviral activity when k(d) is 10(-5) or higher although they may show blocking activity in the TEV assay. Thus, caution must be taken when predicting antiviral activity based on percent channel blockage in electrophysiological assays. These findings provide experimental evidence of the resistance mechanism of the V27A mutation to wild-type inhibitors, previously predicted in silico, offer an explanation for the lack of antiviral activity of compounds active in the TEV assay, and may help design new and more effective drugs.

Slow but Steady Wins the Race: Dissimilarities among New Dual Inhibitors of the Wild-Type and the V27A Mutant M2 Channels of Influenza A Virus

Moroni A;
2017

Abstract

New insights on the amantadine resistance mechanism of the V27A mutant were obtained through the study of novel, easily accessible 4-(1- and 2-adamantyl)piperidines, identified as dual binders of the wild-type and V27A mutant M2 channels of influenza A virus. Their antiviral activity and channel blocking ability were determined using cell-based assays and two-electrode voltage clamp (TEVC) technique on M2 channels, respectively. In addition, electrophysiology experiments revealed two interesting findings: (i) these inhibitors display a different behavior against the wild-type versus V27A mutant A/M2 channels, and (ii) the compounds display antiviral activity when they have k(d) equal or smaller than 10(-6) while they do not exhibit antiviral activity when k(d) is 10(-5) or higher although they may show blocking activity in the TEV assay. Thus, caution must be taken when predicting antiviral activity based on percent channel blockage in electrophysiological assays. These findings provide experimental evidence of the resistance mechanism of the V27A mutation to wild-type inhibitors, previously predicted in silico, offer an explanation for the lack of antiviral activity of compounds active in the TEV assay, and may help design new and more effective drugs.
2017
Istituto di Biofisica - IBF
DRUG-RESISTANT MUTANT; PROTON CHANNEL; ION-CHANNEL; S31N MUTANT; ANTIINFLUENZA VIRUS; NMR-SPECTROSCOPY; IN-VITRO; DISCOVERY; BINDING; PORE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/326330
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact