In the context of time-critical applications there exists the need of clustering data streams so as to provide approximated solutions in the shortest possible time, in order to capture in real-time the evolution of physical or social phenomena. In this work, a nature-inspired algorithm for clustering of evolving big data stream is presented, which is designed to be executed on many-core GPU architectures.

A nature-inspired, anytime and parallel algorithm for data stream clustering

2017

Abstract

In the context of time-critical applications there exists the need of clustering data streams so as to provide approximated solutions in the shortest possible time, in order to capture in real-time the evolution of physical or social phenomena. In this work, a nature-inspired algorithm for clustering of evolving big data stream is presented, which is designed to be executed on many-core GPU architectures.
2017
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
978-1-61499-842-6
Clustering
Data Stream
General Purpose GPU Computing
Anytime Algorithm
CUDA
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/326552
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact