The analysis of remote sensing data to assess geohazards is being improved by web-based platforms and collaborative projects, such as the Geohazard Exploitation Platform (GEP) of the European Space Agency (ESA). This paper presents the evaluation of a surface velocity map that is generated by this platform. The map was produced through an unsupervised Multi-temporal InSAR (MTI) analysis applying the Parallel-SBAS (P-SBAS) algorithm to 25 ENVISAT satellite images from the South of Spain that were acquired between 2003 and 2008. This analysis was carried out using a service implemented in the GEP called "SBAS InSAR". Thanks to the map that was generated by the SBAS InSAR service, we identified processes not documented so far; provided new monitoring data in places affected by known ground instabilities; defined the area affected by these instabilities; and, studied a case where GEP could have been able to help in the forecast of a slope movement reactivation. This amply demonstrates the reliability and usefulness of the GEP, and shows how web-based platforms may enhance the capacity to identify, monitor, and assess hazards that are associated to geological processes.
Evaluation of the SBAS InSAR Service of the European Space Agency's Geohazard Exploitation Platform (GEP)
Davide Notti;
2017
Abstract
The analysis of remote sensing data to assess geohazards is being improved by web-based platforms and collaborative projects, such as the Geohazard Exploitation Platform (GEP) of the European Space Agency (ESA). This paper presents the evaluation of a surface velocity map that is generated by this platform. The map was produced through an unsupervised Multi-temporal InSAR (MTI) analysis applying the Parallel-SBAS (P-SBAS) algorithm to 25 ENVISAT satellite images from the South of Spain that were acquired between 2003 and 2008. This analysis was carried out using a service implemented in the GEP called "SBAS InSAR". Thanks to the map that was generated by the SBAS InSAR service, we identified processes not documented so far; provided new monitoring data in places affected by known ground instabilities; defined the area affected by these instabilities; and, studied a case where GEP could have been able to help in the forecast of a slope movement reactivation. This amply demonstrates the reliability and usefulness of the GEP, and shows how web-based platforms may enhance the capacity to identify, monitor, and assess hazards that are associated to geological processes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.