A malicious alteration of system-provided timeline can negatively affect the reliability of computer forensics. Indeed, detecting such changes and possibly reconstructing the correct timeline of events is of paramount importance for court admissibility and logical coherence of collected evidence. However, reconstructing the correct timeline for a set of network nodes can be difficult since an adversary has a wealth of opportunities to disrupt the timeline and to generate a fake one. This aspect is exacerbated in cloud computing, where host and guest machine-time can be manipulated in various ways by an adversary. Therefore, it is important to guarantee the integrity of the timeline of events for cloud host and guest nodes, or at least to ensure that timeline alterations do not go undetected. This paper provides several contributions. First, we survey the issues related to cloud machine-time reliability. Then, we introduce a novel architecture (CURE) aimed at providing timeline resilience to cloud nodes. Further, we implement the proposed framework and extensively test it on both a simulated environment and on a real cloud. We evaluate and discuss collected results showing the effectiveness of our proposal. (C) 2016 Elsevier B.V. All rights reserved.

CURE-Towards enforcing a reliable timeline for cloud forensics: Model, architecture, and experiments

Lombardi Flavio
2016

Abstract

A malicious alteration of system-provided timeline can negatively affect the reliability of computer forensics. Indeed, detecting such changes and possibly reconstructing the correct timeline of events is of paramount importance for court admissibility and logical coherence of collected evidence. However, reconstructing the correct timeline for a set of network nodes can be difficult since an adversary has a wealth of opportunities to disrupt the timeline and to generate a fake one. This aspect is exacerbated in cloud computing, where host and guest machine-time can be manipulated in various ways by an adversary. Therefore, it is important to guarantee the integrity of the timeline of events for cloud host and guest nodes, or at least to ensure that timeline alterations do not go undetected. This paper provides several contributions. First, we survey the issues related to cloud machine-time reliability. Then, we introduce a novel architecture (CURE) aimed at providing timeline resilience to cloud nodes. Further, we implement the proposed framework and extensively test it on both a simulated environment and on a real cloud. We evaluate and discuss collected results showing the effectiveness of our proposal. (C) 2016 Elsevier B.V. All rights reserved.
2016
Istituto Applicazioni del Calcolo ''Mauro Picone''
Cloud computing
Timeline validation
Digital forensics
Measurement and simulation
Experimental test-beds and research platforms
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/326605
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact