Arc-melted (Zr0.7R0.3)(1.1)Fe10Si2 alloys with R = Y, Ce, Pr and Sm crystallize into the ThMn12-type structure; La substitution leads to the formation of a separate NaZn13-type phase. Compared to the rare-earth-free parent compound, Y, Ce and Sm strengthen the magnetocrystalline anisotropy in this order; whereas Pr weakens it. The effect of Sm is by far the strongest; an anisotropy field of 40.7 kOe determined for the Zr0.7Sm0.3Fe10Si2 by the singular point detection technique is high enough to make this compound a good candidate for a very rare-earth-lean, cobalt-free permanent magnet material. The effect of Sm has been demonstrated in isotropic nanocrystalline alloys prepared via melt-spinning followed by vacuum annealing. The optimally processed alloys with R represented by Zr and Sm exhibited coercivity values of 0.7 and 2.4 kOe, respectively. The analysis suggests that the development of the coercivity is controlled by decomposition of the 1:12 structure in the former sample and by the crystallite growth in the latter. Calculated remanence and maximum energy product of the Sm-substituted nanocrystalline alloy were 6.3 kG and 4.6 MGOe. The cubic Zr6Fe16Si7 compound, which is the frequent minority phase in the studied alloys, was also synthesized and found to be paramagnetic at the room temperature. (C) 2016 Elsevier B.V. All rights reserved.

Structure and permanent magnet properties of Zr1-XRXFe10Si2 alloys with R = Y, La, Ce, Pr and Sm

Cabassi R;Fabbrici S;Albertini F;
2016

Abstract

Arc-melted (Zr0.7R0.3)(1.1)Fe10Si2 alloys with R = Y, Ce, Pr and Sm crystallize into the ThMn12-type structure; La substitution leads to the formation of a separate NaZn13-type phase. Compared to the rare-earth-free parent compound, Y, Ce and Sm strengthen the magnetocrystalline anisotropy in this order; whereas Pr weakens it. The effect of Sm is by far the strongest; an anisotropy field of 40.7 kOe determined for the Zr0.7Sm0.3Fe10Si2 by the singular point detection technique is high enough to make this compound a good candidate for a very rare-earth-lean, cobalt-free permanent magnet material. The effect of Sm has been demonstrated in isotropic nanocrystalline alloys prepared via melt-spinning followed by vacuum annealing. The optimally processed alloys with R represented by Zr and Sm exhibited coercivity values of 0.7 and 2.4 kOe, respectively. The analysis suggests that the development of the coercivity is controlled by decomposition of the 1:12 structure in the former sample and by the crystallite growth in the latter. Calculated remanence and maximum energy product of the Sm-substituted nanocrystalline alloy were 6.3 kG and 4.6 MGOe. The cubic Zr6Fe16Si7 compound, which is the frequent minority phase in the studied alloys, was also synthesized and found to be paramagnetic at the room temperature. (C) 2016 Elsevier B.V. All rights reserved.
2016
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Intermetallics
Rare earth alloys and compounds
Crystal structure
Anisotropy
Rapid quenching
Permanent magnets
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/326779
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? ND
social impact