High individual variability in follicular recruitment and hence in the number of embryos produced is a major factor limiting the application of reproductive technologies in buffalo. Therefore, the identification of reliable markers to select embryo donors is critical to enroll buffaloes in embryo production programs. Better understanding of factors involved in follicular growth is also necessary to improve the response to superovulation in this species. The aim of this work was thus to determine the anti-Mullerian hormone (AMH) concentration in follicular fluid (FF) recovered from different size follicles and evaluate the mRNA expression profiles of development-related (AMHR2, CYP19A1, FSHR, and LHR) and apoptosis-related genes (TP53INP1 and CASP3) in the corresponding granulosa cells (GCs) in buffalo. Another objective was to evaluate whether the AMH concentration in FF and gene expression of GCs is associated with the antral follicular count. Ovaries were collected at the slaughterhouse, and all follicles were counted and classified as small (3-5 mm), medium (5-8 mm), and large (>8 mm). Follicular fluid was recovered for AMH determination, and the mRNA expression of AMHR2, FSHR, LHR, CYP19A1, TP53INP1, and CASP3 was analyzed in GCs. The AMH concentration in FF decreased (P < 0.01) at increasing follicular diameter. The mRNA expression of AMHR2 and FSHR was higher (P < 0.05) in small follicles, whereas that of LHR and CYP19A1 was higher (P < 0.05) in large follicles. The intrafollicular AMH concentration was positively correlated with the antral follicular count (r = 031; P < 0.05). Interestingly, good donors (>12 follicles) had a higher (P < 0.05) concentration of AMH and AMHR2 levels in small follicles and higher (P < 0.05) LHR levels in large follicles than bad donors (<12 follicles). These results suggest a potential use of AMH to select buffalo donors to enroll in embryo production programs, laying the basis for further investigations. (C) 2016 Elsevier Inc. All rights reserved.

Anti-Mullerian hormone (AMH) concentration in follicular fluid and mRNA expression of AMH receptor type II and LH receptor in granulosa cells as predictive markers of good buffalo (Bubalus bubalis) donors

D'Esposito Maurizio;
2016

Abstract

High individual variability in follicular recruitment and hence in the number of embryos produced is a major factor limiting the application of reproductive technologies in buffalo. Therefore, the identification of reliable markers to select embryo donors is critical to enroll buffaloes in embryo production programs. Better understanding of factors involved in follicular growth is also necessary to improve the response to superovulation in this species. The aim of this work was thus to determine the anti-Mullerian hormone (AMH) concentration in follicular fluid (FF) recovered from different size follicles and evaluate the mRNA expression profiles of development-related (AMHR2, CYP19A1, FSHR, and LHR) and apoptosis-related genes (TP53INP1 and CASP3) in the corresponding granulosa cells (GCs) in buffalo. Another objective was to evaluate whether the AMH concentration in FF and gene expression of GCs is associated with the antral follicular count. Ovaries were collected at the slaughterhouse, and all follicles were counted and classified as small (3-5 mm), medium (5-8 mm), and large (>8 mm). Follicular fluid was recovered for AMH determination, and the mRNA expression of AMHR2, FSHR, LHR, CYP19A1, TP53INP1, and CASP3 was analyzed in GCs. The AMH concentration in FF decreased (P < 0.01) at increasing follicular diameter. The mRNA expression of AMHR2 and FSHR was higher (P < 0.05) in small follicles, whereas that of LHR and CYP19A1 was higher (P < 0.05) in large follicles. The intrafollicular AMH concentration was positively correlated with the antral follicular count (r = 031; P < 0.05). Interestingly, good donors (>12 follicles) had a higher (P < 0.05) concentration of AMH and AMHR2 levels in small follicles and higher (P < 0.05) LHR levels in large follicles than bad donors (<12 follicles). These results suggest a potential use of AMH to select buffalo donors to enroll in embryo production programs, laying the basis for further investigations. (C) 2016 Elsevier Inc. All rights reserved.
2016
Istituto di genetica e biofisica "Adriano Buzzati Traverso"- IGB - Sede Napoli
Anti-Mullerian hormone
Buffalo
Gene expression
Granulosa cell
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/326807
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 24
social impact