Carbon dioxide emissions resulting from fossil fuels (brown energy) combustion are the main cause of global warming due to the greenhouse effect. Large IT companies have recently increased their efforts in reducing the carbon dioxide footprint originated from their data center electricity consumption. On one hand, better infrastructure and modern hardware allow for a more efficient usage of electric resources. On the other hand, data-centers can be powered by renewable sources (green energy) that are both environmental friendly and economically convenient. In this paper, we tackle the problem of targeting the usage of green energy to minimize the expenditure of running multi-center Web search engines, i.e., systems composed by multiple, geographically remote, computing facilities. We propose a mathematical model to minimize the operational costs of multi-center Web search engines by exploiting renewable energies whenever available at different locations. Using this model, we design an algorithm which decides what fraction of the incoming query load arriving into one processing facility must be forwarded to be processed at different sites to use green energy sources. We experiment using real traffic from a large search engine and we compare our model against state of the art baselines for query forwarding. Our experimental results show that the proposed solution maintains an high query throughput, while reducing by up to ~25% the energy operational costs of multi-center search engines. Additionally, our algorithm can reduce the brown energy consumption by almost 6% when energy-proportional servers are employed.

Exploiting green energy to reduce the operational costs of multi-center Web search engines

Tonellotto N
2016

Abstract

Carbon dioxide emissions resulting from fossil fuels (brown energy) combustion are the main cause of global warming due to the greenhouse effect. Large IT companies have recently increased their efforts in reducing the carbon dioxide footprint originated from their data center electricity consumption. On one hand, better infrastructure and modern hardware allow for a more efficient usage of electric resources. On the other hand, data-centers can be powered by renewable sources (green energy) that are both environmental friendly and economically convenient. In this paper, we tackle the problem of targeting the usage of green energy to minimize the expenditure of running multi-center Web search engines, i.e., systems composed by multiple, geographically remote, computing facilities. We propose a mathematical model to minimize the operational costs of multi-center Web search engines by exploiting renewable energies whenever available at different locations. Using this model, we design an algorithm which decides what fraction of the incoming query load arriving into one processing facility must be forwarded to be processed at different sites to use green energy sources. We experiment using real traffic from a large search engine and we compare our model against state of the art baselines for query forwarding. Our experimental results show that the proposed solution maintains an high query throughput, while reducing by up to ~25% the energy operational costs of multi-center search engines. Additionally, our algorithm can reduce the brown energy consumption by almost 6% when energy-proportional servers are employed.
2016
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-1-4503-4143-1
Web search engines
Query forwarding
Green energy
Search engine architectures and scalability
Distributed retrieval
File in questo prodotto:
File Dimensione Formato  
prod_366244-doc_120865.pdf

solo utenti autorizzati

Descrizione: Exploiting green energy to reduce the operational costs of multi-center Web search engines
Tipologia: Versione Editoriale (PDF)
Dimensione 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/326842
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact