What is the role of coherence in determining the distribution of work done on a quantum system? We approach this question from an operational perspective and consider a setup in which the internal energy of a closed system is recorded by a quantum detector before and after the system is acted upon by an external drive. We find that the resulting work distribution depends on the initial state of the detector as well as on the choice of the final measurement. We consider two complementary measurement schemes, both of which show clear signatures of quantum interference. We specifically discuss how to implement these schemes in the circuit QED architecture, using an artificial atom as the system and a quantized mode of the electromagnetic field as the detector. Different measurement schemes can be realized by preparing the field either in a superposition of Fock states or in a coherent state and exploiting state-of-the art techniques for the characterization of microwave radiation at the quantum level. More generally, the single bosonic mode we utilize is arguably the minimal quantum detector capable of capturing the complementary aspects of the work distribution discussed here.

Probing quantum interference effects in the work distribution

Solinas P;
2016

Abstract

What is the role of coherence in determining the distribution of work done on a quantum system? We approach this question from an operational perspective and consider a setup in which the internal energy of a closed system is recorded by a quantum detector before and after the system is acted upon by an external drive. We find that the resulting work distribution depends on the initial state of the detector as well as on the choice of the final measurement. We consider two complementary measurement schemes, both of which show clear signatures of quantum interference. We specifically discuss how to implement these schemes in the circuit QED architecture, using an artificial atom as the system and a quantized mode of the electromagnetic field as the detector. Different measurement schemes can be realized by preparing the field either in a superposition of Fock states or in a coherent state and exploiting state-of-the art techniques for the characterization of microwave radiation at the quantum level. More generally, the single bosonic mode we utilize is arguably the minimal quantum detector capable of capturing the complementary aspects of the work distribution discussed here.
2016
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Probing quantum interference effects in the work distribution
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/327123
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? ND
social impact