In this work, we investigate the possible causes of the differential damaging observed in Visso village (Central Apennines, about 28 km north from the August 24th, 2016 Mw 6.0 earthquake epicenter). Following insights from the available geological cartography at 1:10.000 scale, a preliminary geophysical survey has been performed in the damaged area in order to constrain geometries and extent of the subsoil lithotypes. Then, these results have been used to retrieve a Vs profile close to the most heavily damaged buildings. This latter has been used as input for a numerical analysis aimed at deriving the motion at the ground level in the study area. In particular, a linear equivalent simulation has been performed by means of EERA code and the waveform has been obtained convolving the time history recorded during the August 24th, 2016 mainshock at Spoleto Monteluco (SPM) site. Our preliminary results indicate a possible correlation of damaging to the thickness and shape of the geological units. Nevertheless, further analyses are necessary to highlight any 2D basin and / non - linear soil behaviour effects in order to compare them to the intrinsic buildings vulnerability, according to the EMS98 guidelines
Local seismic response studies in the north-western portion of the August 24th, 2016 Mw 6.0 earthquake affected area. The case of Visso village (Central Apennines)
Gaudiosi I;Vignaroli G;Sirianni P;Giallini S;Mori F;Razzano R;Simionato M;Moscatelli M
2016
Abstract
In this work, we investigate the possible causes of the differential damaging observed in Visso village (Central Apennines, about 28 km north from the August 24th, 2016 Mw 6.0 earthquake epicenter). Following insights from the available geological cartography at 1:10.000 scale, a preliminary geophysical survey has been performed in the damaged area in order to constrain geometries and extent of the subsoil lithotypes. Then, these results have been used to retrieve a Vs profile close to the most heavily damaged buildings. This latter has been used as input for a numerical analysis aimed at deriving the motion at the ground level in the study area. In particular, a linear equivalent simulation has been performed by means of EERA code and the waveform has been obtained convolving the time history recorded during the August 24th, 2016 mainshock at Spoleto Monteluco (SPM) site. Our preliminary results indicate a possible correlation of damaging to the thickness and shape of the geological units. Nevertheless, further analyses are necessary to highlight any 2D basin and / non - linear soil behaviour effects in order to compare them to the intrinsic buildings vulnerability, according to the EMS98 guidelinesI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.