On 24 August 2016, at 01:36 UTC¸ the intra-Apennine extensional fault system of Central Italy released a destructive earthquake (MW 6.0). It produced widespread damage and fatalities, killing about 300 people and severely destroying the town of Amatrice and surrounding villages. After few hours, the Amatrice earthquake was followed by a significant aftershock (MW 5.5), which nucleated 15 km NW-ward. The epicentral area of the seismic sequence extends in the NNW-SSE direction, for a length of about 25-30 km. It is located at the hanging-wall of the WSW-dipping Vettore-Gorzano active extensional fault system. During the days following the main shock, a significant number of Synthetic Aperture Radar (SAR) data have been acquired from different passes and angles by the L-band ALOS-2, C-band Sentinel-1 and X-band COSMO-SkyMed satellites. This allowed us to map in a very short time the co-seismic ground displacements through the Differential SAR Interferometry (DInSAR) technique, and also to evaluate their Vertical and East-West components with high details. The generated interferometric pattern is characterized by a double-eyed co-seismic shape that spans 20 km along the NNW-SSE direction and that well coincides with the epicentral areas. We modeled the seismic source that well fit the Mw 6.2 event. In particular, for this analysis, we separately applied an analytical Okada approach as well as a 3D Finite Element (FE) numerical modeling, the latter jointly exploiting DInSAR measurements and structural-geological data. The model obtained via the FE approach suggests that the Amatrice 2016 earthquake nucleated at 8 km deep along the intersection line between the Vettoretto-Redentore and the Northern Gorzano faults, and instantly geminated in two rupture patches that radiated with an approximate bilateral symmetry on the two fault planes. The two rupture patches covered differently shaped slip area, with aspect ratio that well recalls the shape of the interferometric lobes of ground subsidence at the two faults hanging wall. The different shapes of the two lobes are partially associated to the different dip-angle of the Vettoreto-Redentore and Gorzano faults (50° ad 60° respectively). In summary, we found evidences of bilateral rupture propagating along two en-echelon faults connected at the hypocenter.

The Mw 6.0 2016 Amatrice (Italy) Earthquake: Source Geometry Inferred from DInSAR Measurements and Geological Data.

Casu F;Castaldo R;De Novellis V;Pepe S;Solaro G;Bonano M;De Luca C;Lanari R;Manunta M;Manzo M;Pepe A;Zinno I;Tizzani P
2016

Abstract

On 24 August 2016, at 01:36 UTC¸ the intra-Apennine extensional fault system of Central Italy released a destructive earthquake (MW 6.0). It produced widespread damage and fatalities, killing about 300 people and severely destroying the town of Amatrice and surrounding villages. After few hours, the Amatrice earthquake was followed by a significant aftershock (MW 5.5), which nucleated 15 km NW-ward. The epicentral area of the seismic sequence extends in the NNW-SSE direction, for a length of about 25-30 km. It is located at the hanging-wall of the WSW-dipping Vettore-Gorzano active extensional fault system. During the days following the main shock, a significant number of Synthetic Aperture Radar (SAR) data have been acquired from different passes and angles by the L-band ALOS-2, C-band Sentinel-1 and X-band COSMO-SkyMed satellites. This allowed us to map in a very short time the co-seismic ground displacements through the Differential SAR Interferometry (DInSAR) technique, and also to evaluate their Vertical and East-West components with high details. The generated interferometric pattern is characterized by a double-eyed co-seismic shape that spans 20 km along the NNW-SSE direction and that well coincides with the epicentral areas. We modeled the seismic source that well fit the Mw 6.2 event. In particular, for this analysis, we separately applied an analytical Okada approach as well as a 3D Finite Element (FE) numerical modeling, the latter jointly exploiting DInSAR measurements and structural-geological data. The model obtained via the FE approach suggests that the Amatrice 2016 earthquake nucleated at 8 km deep along the intersection line between the Vettoretto-Redentore and the Northern Gorzano faults, and instantly geminated in two rupture patches that radiated with an approximate bilateral symmetry on the two fault planes. The two rupture patches covered differently shaped slip area, with aspect ratio that well recalls the shape of the interferometric lobes of ground subsidence at the two faults hanging wall. The different shapes of the two lobes are partially associated to the different dip-angle of the Vettoreto-Redentore and Gorzano faults (50° ad 60° respectively). In summary, we found evidences of bilateral rupture propagating along two en-echelon faults connected at the hypocenter.
2016
Istituto per il Rilevamento Elettromagnetico dell'Ambiente - IREA
DInSAR
Amatrice
FEM
Modeling
Earthquakes
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/327269
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact