A large anisotropy in the electronic properties across a structural transition in several correlated systems has been identified as the key manifestation of electronic nematic order, breaking rotational symmetry. In this context, FeSe is attracting tremendous interest, since electronic nematicity develops over a wide range of temperatures, allowing accurate experimental investigation. Here we combine angle-resolved photoemission spectroscopy and theoretical calculations based on a realistic multiorbital model to unveil the microscopic mechanism responsible for the evolution of the electronic structure of FeSe across the nematic transition. We show that the self-energy corrections due to the exchange of spin fluctuations between hole and electron pockets are responsible for an orbital-dependent shrinking of the Fermi surface that affects mainly the xz/yz parts of the Fermi surface. This result is consistent with our experimental observation of the Fermi surface in the high-temperature tetragonal phase, which includes the xy electron sheet that was not clearly resolved before. In the low-temperature nematic phase, we experimentally confirm the appearance of a large (~50 meV) xz/yz splitting. It can be well reproduced in our model by assuming a moderate splitting between spin fluctuations along the x and y crystallographic directions. Our mechanism shows how the full entanglement between orbital and spin degrees of freedom can make a spin-driven nematic transition equivalent to an effective orbital order.

Orbital-dependent Fermi surface shrinking as a fingerprint of nematicity in FeSe

Laura Fanfarillo;Lara Benfatto;
2016

Abstract

A large anisotropy in the electronic properties across a structural transition in several correlated systems has been identified as the key manifestation of electronic nematic order, breaking rotational symmetry. In this context, FeSe is attracting tremendous interest, since electronic nematicity develops over a wide range of temperatures, allowing accurate experimental investigation. Here we combine angle-resolved photoemission spectroscopy and theoretical calculations based on a realistic multiorbital model to unveil the microscopic mechanism responsible for the evolution of the electronic structure of FeSe across the nematic transition. We show that the self-energy corrections due to the exchange of spin fluctuations between hole and electron pockets are responsible for an orbital-dependent shrinking of the Fermi surface that affects mainly the xz/yz parts of the Fermi surface. This result is consistent with our experimental observation of the Fermi surface in the high-temperature tetragonal phase, which includes the xy electron sheet that was not clearly resolved before. In the low-temperature nematic phase, we experimentally confirm the appearance of a large (~50 meV) xz/yz splitting. It can be well reproduced in our model by assuming a moderate splitting between spin fluctuations along the x and y crystallographic directions. Our mechanism shows how the full entanglement between orbital and spin degrees of freedom can make a spin-driven nematic transition equivalent to an effective orbital order.
2016
Istituto dei Sistemi Complessi - ISC
Istituto Officina dei Materiali - IOM -
Fermi surface
File in questo prodotto:
File Dimensione Formato  
prod_366334-doc_120922.pdf

solo utenti autorizzati

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.34 MB
Formato Adobe PDF
4.34 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/327338
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 102
  • ???jsp.display-item.citation.isi??? ND
social impact