We demonstrate tunable bistability and a strong negative differential resistance in InAs/GaSb core-shell nanowire devices embedding a radial broken-gap heterojunction. Nanostructures have been grown using a catalyst-free synthesis on a Si substrate. Current-voltage characteristics display a top peak-to-valley ratio of 4.8 at 4.2 K and 2.2 at room temperature. The Esaki effect can be modulated - or even completely quenched - by field effect, by controlling the band bending profile along the azimuthal angle of the radial heterostructure. Hysteretic behavior is also observed in the presence of a suitable resistive load. Our results indicate that high-quality broken-gap devices can be obtained using Au-free growth.

Tunable Esaki Effect in Catalyst-Free InAs/GaSb Core-Shell Nanowires

Rocci M;Rossella F;Zannier V;Rossi F;Ercolani D;Sorba L;Beltram F;Roddaro S
2016

Abstract

We demonstrate tunable bistability and a strong negative differential resistance in InAs/GaSb core-shell nanowire devices embedding a radial broken-gap heterojunction. Nanostructures have been grown using a catalyst-free synthesis on a Si substrate. Current-voltage characteristics display a top peak-to-valley ratio of 4.8 at 4.2 K and 2.2 at room temperature. The Esaki effect can be modulated - or even completely quenched - by field effect, by controlling the band bending profile along the azimuthal angle of the radial heterostructure. Hysteretic behavior is also observed in the presence of a suitable resistive load. Our results indicate that high-quality broken-gap devices can be obtained using Au-free growth.
2016
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Istituto Nanoscienze - NANO
-
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/327353
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? ND
social impact