Cancer heterogeneity represents a major hurdle in the development of effective theranostic strategies, as it prevents to devise unique and maximally efficient diagnostic, prognostic and therapeutic procedures even for patients affected by the same tumor type. Computational techniques can nowadays leverage the huge and ever increasing amount of (epi)genomic data to tackle this problem, therefore providing new and valuable instruments for decision support to biologists and pathologists, in the broad sphere of precision medicine. In this context, we here introduce a novel cancer subtype classifier from gene expression data and we apply it to two different Breast Cancer datasets, from TCGA and GEO repositories. The classifier is based on Support Vector Machines and relies on the information about the relevant pathways involved in breast cancer development to reduce the huge variable space. Among the main results, we show that the classifier accuracy is preserved at excellent values even when the variable space is reduced by a 20-fold, hence providing a precious tool for cancer patient profiling even in case of limited experimental resources

Pathway-based classification of breast cancer subtypes

Alex Graudenzi;Claudia Cava;Gloria Bertoli;Isabella Castiglioni
2017

Abstract

Cancer heterogeneity represents a major hurdle in the development of effective theranostic strategies, as it prevents to devise unique and maximally efficient diagnostic, prognostic and therapeutic procedures even for patients affected by the same tumor type. Computational techniques can nowadays leverage the huge and ever increasing amount of (epi)genomic data to tackle this problem, therefore providing new and valuable instruments for decision support to biologists and pathologists, in the broad sphere of precision medicine. In this context, we here introduce a novel cancer subtype classifier from gene expression data and we apply it to two different Breast Cancer datasets, from TCGA and GEO repositories. The classifier is based on Support Vector Machines and relies on the information about the relevant pathways involved in breast cancer development to reduce the huge variable space. Among the main results, we show that the classifier accuracy is preserved at excellent values even when the variable space is reduced by a 20-fold, hence providing a precious tool for cancer patient profiling even in case of limited experimental resources
2017
Istituto di Bioimmagini e Fisiologia Molecolare - IBFM
Cancer Subtypes Classification
Breast Cancer
BC
Pathway Enrichment; Differentially Expressed Genes
DEG
Review
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/327367
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact