Crystalline first-row transition-metal (Mn, Fe, Co, Ni, Cu, and Zn) ferrites were prepared by an unprecedented synergetic combination of miniemulsion synthesis and solvothermal route, pursuing unconventional conditions in terms of space confinement, temperature, and pressure. This synergy allowed for obtaining six different crystalline ferrites at much lower temperature (i.e., 80 °C) than usually required and without any postsynthesis thermal treatment. X-ray diffraction (XRD) revealed that analogous ferrites synthesized by miniemulsion at ambient pressure or in bulk (i.e., from an aqueous bulk solution and not in the confined space of the miniemulsion droplets) either at ambient pressure or under solvothermal conditions did not result in comparatively highly crystalline products. To follow the structural evolution at local level as a function of reaction time and depending on the synthesis conditions, X-ray absorption spectroscopy (XAS) was used to determine the cation distribution in these structures. Well-defined nanostructures were observed by transmission electron microscopy (TEM). Concerning their functional behavior, the synthesized ferrites presented superparamagnetism and were found to be active oxidation catalysts, as demonstrated for the oxidation of styrene, taken as a model reaction. Because of the magnetic properties, the ferrites can be easily recovered from the reaction medium, after the catalysis, by magnetic separation and reused for several cycles without losing activity.

Synergy of Miniemulsion and Solvothermal Conditions for the Low-Temperature Crystallization of Magnetic Nanostructured Transition-Metal Ferrites

Gross S
2017

Abstract

Crystalline first-row transition-metal (Mn, Fe, Co, Ni, Cu, and Zn) ferrites were prepared by an unprecedented synergetic combination of miniemulsion synthesis and solvothermal route, pursuing unconventional conditions in terms of space confinement, temperature, and pressure. This synergy allowed for obtaining six different crystalline ferrites at much lower temperature (i.e., 80 °C) than usually required and without any postsynthesis thermal treatment. X-ray diffraction (XRD) revealed that analogous ferrites synthesized by miniemulsion at ambient pressure or in bulk (i.e., from an aqueous bulk solution and not in the confined space of the miniemulsion droplets) either at ambient pressure or under solvothermal conditions did not result in comparatively highly crystalline products. To follow the structural evolution at local level as a function of reaction time and depending on the synthesis conditions, X-ray absorption spectroscopy (XAS) was used to determine the cation distribution in these structures. Well-defined nanostructures were observed by transmission electron microscopy (TEM). Concerning their functional behavior, the synthesized ferrites presented superparamagnetism and were found to be active oxidation catalysts, as demonstrated for the oxidation of styrene, taken as a model reaction. Because of the magnetic properties, the ferrites can be easily recovered from the reaction medium, after the catalysis, by magnetic separation and reused for several cycles without losing activity.
2017
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
SELECTIVE OXIDATION
WET-CHEMISTRY
IRON-OXIDE
INORGANIC NANOPARTICLES
HYDROTHERMAL SYNTHESIS
File in questo prodotto:
File Dimensione Formato  
prod_368706-doc_122316.pdf

solo utenti autorizzati

Descrizione: Synergy of Miniemulsion and Solvothermal Conditions for the Low- Temperature Crystallization of Magnetic Nanostructured Transition- Metal Ferrites
Tipologia: Versione Editoriale (PDF)
Dimensione 7.18 MB
Formato Adobe PDF
7.18 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/327383
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 27
social impact