A cesiated surface model was considered to study the dynamics of hydrogen atom scattering using a semiclassical collisional method. Using dipole correction method, the work function of the considered surface, is calculated to be 1.81eV (± 0.02) eV. The Potential Energy Surface for the interaction of H atoms with the surface was determined via first principle electronic structure calculations including the interaction with both Cs and Mo atoms of the surface. We found the scattered H atoms to have a negative partial charge of nearly 0.4 with the backscattered flux arising mainly from H atoms impinging directly (or very close) to Cs atoms on the surface. On the contrary, H atoms impinging in the voids between the Cs atoms propagate through the first Cs layer and remain adsorbed. The propagation occurs mainly in the vertical direction. The scattering probability after a very quick increase remains almost constant around an average value of 0.35.

Hydrogen scattering from a cesiated surface model

Maria Rutigliano;Amedeo Palma;Nico Sanna
2017

Abstract

A cesiated surface model was considered to study the dynamics of hydrogen atom scattering using a semiclassical collisional method. Using dipole correction method, the work function of the considered surface, is calculated to be 1.81eV (± 0.02) eV. The Potential Energy Surface for the interaction of H atoms with the surface was determined via first principle electronic structure calculations including the interaction with both Cs and Mo atoms of the surface. We found the scattered H atoms to have a negative partial charge of nearly 0.4 with the backscattered flux arising mainly from H atoms impinging directly (or very close) to Cs atoms on the surface. On the contrary, H atoms impinging in the voids between the Cs atoms propagate through the first Cs layer and remain adsorbed. The propagation occurs mainly in the vertical direction. The scattering probability after a very quick increase remains almost constant around an average value of 0.35.
2017
Istituto di Nanotecnologia - NANOTEC
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
cesiated surface
DFT calculations
Work function
Molecular Dynamics
Surface Processes
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/327569
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact