Integral formulations, suitable for the numerical solution of quasi-magnetostatic (eddy currents) problems in large and complex 3D domains, require specific post-processing tools to compute the effects of known current density distributions over elementary geometric entities (both mesh elements and field sources). The aim of this paper is to present a fast and robust implementation on a GPU architecture of an accurate algorithm for the computation of magnetic field and vector potential components.

Fast and efficient algorithms for computational electromagnetics on GPU architecture

Manduchi G;
2016

Abstract

Integral formulations, suitable for the numerical solution of quasi-magnetostatic (eddy currents) problems in large and complex 3D domains, require specific post-processing tools to compute the effects of known current density distributions over elementary geometric entities (both mesh elements and field sources). The aim of this paper is to present a fast and robust implementation on a GPU architecture of an accurate algorithm for the computation of magnetic field and vector potential components.
2016
Istituto gas ionizzati - IGI - Sede Padova
electromagnetics fields
GPU
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/327784
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact