The gas neutralizer converter used to produce a neutral hydrogen (or deuterium) beam from a H- (or D-) beam has intrinsic limitation on conversion efficiency and requires a residual ion dump for H-, and produced H+. By recirculating H- into gas neutralizer N times (with N up to 4) conversion efficiency can be increased and the ion dump size is greatly reduced. In other words, the gas neutralizer becomes one element of a large acceptance H- storage ring, which is here studied both with linear theory and with numerical simulation. Among several practical solutions, the rectangular lattice with M=2 and M=4 bending dipole seems the more convenient for an initial studies; symmetry number (number of equal section per turn) is S=2 for both lattices. It is important to control secondary ion accumulation inside storage rings, which has beneficial effect (reduction of space charge) and unwanted effects (beam stripping in dipoles); clearing electrodes may be useful. Among advanced concepts, note first that controlling secondary plasma may also produce a plasma neutralizer, with higher efficiency. Second, adding a H+ storage ring, with a long straight section in common, is a convenient method to exploit the H+ and H- mutual neutralization, so that in principle conversion effiency may approach unity. Application to fusion and other use of dual beam technology are also reviewed.
High current storage rings for neutral beam injectors
Serianni G;Antoni V
2016
Abstract
The gas neutralizer converter used to produce a neutral hydrogen (or deuterium) beam from a H- (or D-) beam has intrinsic limitation on conversion efficiency and requires a residual ion dump for H-, and produced H+. By recirculating H- into gas neutralizer N times (with N up to 4) conversion efficiency can be increased and the ion dump size is greatly reduced. In other words, the gas neutralizer becomes one element of a large acceptance H- storage ring, which is here studied both with linear theory and with numerical simulation. Among several practical solutions, the rectangular lattice with M=2 and M=4 bending dipole seems the more convenient for an initial studies; symmetry number (number of equal section per turn) is S=2 for both lattices. It is important to control secondary ion accumulation inside storage rings, which has beneficial effect (reduction of space charge) and unwanted effects (beam stripping in dipoles); clearing electrodes may be useful. Among advanced concepts, note first that controlling secondary plasma may also produce a plasma neutralizer, with higher efficiency. Second, adding a H+ storage ring, with a long straight section in common, is a convenient method to exploit the H+ and H- mutual neutralization, so that in principle conversion effiency may approach unity. Application to fusion and other use of dual beam technology are also reviewed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


