In this paper we revisit the problem of finding an orthogonal similarity transformation that puts an $n\times n$ matrix $A$ in a block upper-triangular form that reveals its Jordan structure at a particular eigenvalue $\lambda_0$. The obtained form in fact reveals the dimensions of the null spaces of $(A-\lambda_0 I)^i$ at that eigenvalue via the sizes of the leading diagonal blocks, and from this the Jordan structure at $\lambda_0$ is then easily recovered. The method starts from a Hessenberg form that already reveals several properties of the Jordan structure of $A$. It then updates the Hessenberg form in an efficient way to transform it to a block-triangular form in ${\cal O}(mn^2)$ floating point operations, where $m$ is the total multiplicity of the eigenvalue. The method only uses orthogonal transformations and is backward stable. We illustrate the method with a number of numerical examples.

Computing the Jordan structure of an eigenvalue

Nicola Mastronardi;
2017

Abstract

In this paper we revisit the problem of finding an orthogonal similarity transformation that puts an $n\times n$ matrix $A$ in a block upper-triangular form that reveals its Jordan structure at a particular eigenvalue $\lambda_0$. The obtained form in fact reveals the dimensions of the null spaces of $(A-\lambda_0 I)^i$ at that eigenvalue via the sizes of the leading diagonal blocks, and from this the Jordan structure at $\lambda_0$ is then easily recovered. The method starts from a Hessenberg form that already reveals several properties of the Jordan structure of $A$. It then updates the Hessenberg form in an efficient way to transform it to a block-triangular form in ${\cal O}(mn^2)$ floating point operations, where $m$ is the total multiplicity of the eigenvalue. The method only uses orthogonal transformations and is backward stable. We illustrate the method with a number of numerical examples.
2017
Istituto Applicazioni del Calcolo ''Mauro Picone''
Jordan structure
staircase form
Hessenberg form
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/327864
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact