Through recent discoveries and new knowledge among correlations between molecular biology and materials science, it is a growing interest to design new biomaterials able to interact-i.e., to influence, to guide or to detect-with cells and their surrounding microenvironments, in order to better control biological phenomena. In this context, electro-active polymers (EAPs) are showing great promise as biomaterials acting as an interface between electronics and biology. This is ascribable to the highly tunability of chemical/physical properties which confer them different conductive properties for various applicative uses (i.e., molecular targeting, biosensors, biocompatible scaffolds). This review article is divided into three parts: the first one is an overview on EAPs to introduce basic conductivity mechanisms and their classification. The second one is focused on the description of most common processes used to manipulate EAPs in the form of two-dimensional (2D) and three-dimensional (3D) materials. The last part addresses their use in current applications in different biomedical research areas including tissue engineering, biosensors and molecular delivery.

Electro-active polymers (EAPs): A promising route to design bio-organic/bioinspired platforms with on demand functionalities

2016

Abstract

Through recent discoveries and new knowledge among correlations between molecular biology and materials science, it is a growing interest to design new biomaterials able to interact-i.e., to influence, to guide or to detect-with cells and their surrounding microenvironments, in order to better control biological phenomena. In this context, electro-active polymers (EAPs) are showing great promise as biomaterials acting as an interface between electronics and biology. This is ascribable to the highly tunability of chemical/physical properties which confer them different conductive properties for various applicative uses (i.e., molecular targeting, biosensors, biocompatible scaffolds). This review article is divided into three parts: the first one is an overview on EAPs to introduce basic conductivity mechanisms and their classification. The second one is focused on the description of most common processes used to manipulate EAPs in the form of two-dimensional (2D) and three-dimensional (3D) materials. The last part addresses their use in current applications in different biomedical research areas including tissue engineering, biosensors and molecular delivery.
2016
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
conductive polymers
biosensors
scaffolds
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/328070
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 66
  • ???jsp.display-item.citation.isi??? ND
social impact