Transient molecular networks, a class of adaptive soft materials with remarkable application potential, display complex, and intriguing dynamic behavior. By performing dynamic light scattering on a wide angular range, we study the relaxation dynamics of a reversible network formed by DNA tetravalent nanoparticles, finding a slow relaxation mode that is wave vector independent at large q and crosses over to a standard q-2 viscoelastic relaxation at low q. Exploiting the controlled properties of our DNA network, we attribute this mode to fluctuations in local elasticity induced by connectivity rearrangement. We propose a simple beads and springs model that captures the basic features of this q0 behavior.

Fluctuating Elasticity Mode in Transient Molecular Networks

Sciortino F;
2017

Abstract

Transient molecular networks, a class of adaptive soft materials with remarkable application potential, display complex, and intriguing dynamic behavior. By performing dynamic light scattering on a wide angular range, we study the relaxation dynamics of a reversible network formed by DNA tetravalent nanoparticles, finding a slow relaxation mode that is wave vector independent at large q and crosses over to a standard q-2 viscoelastic relaxation at low q. Exploiting the controlled properties of our DNA network, we attribute this mode to fluctuations in local elasticity induced by connectivity rearrangement. We propose a simple beads and springs model that captures the basic features of this q0 behavior.
2017
Istituto dei Sistemi Complessi - ISC
DYNAMIC LIGHT-SCATTERING; AQUEOUS BORAX SOLUTIONS; VALENCE DNA NANOSTARS; POLYMER-SOLUTIONS; POLY(VINYL ALCOHOL); COLLOIDAL CRYSTALS; RELAXATION MODE; VISCOELASTICITY; RHEOLOGY; BEHAVIOR
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/328111
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? ND
social impact