SO2 poisoning of methane oxidation over alumina-supported, Pd@CexZr1-xO2 nanoparticle catalysts was systematically studied by means of advanced PhotoElectron Spectroscopy (PES) methods. The Pd@CexZr1-xO2 units were synthesized and deposited on two modified-alumina supports, i.e. high surface area modified alumina and a model alumina prepared by Atomic Layer Deposition (ALD) of alumina on Indium Tin Oxide (ITO)/quartz slides. The model support was designed to be suitable for PES analysis and was stable to high temperature treatments (850 °C). Characterization of the high-surface-area (HSA) catalysts by X-Ray Diffraction (XRD), N2 physisorption, CO chemisorption and Transmission Electron Microscopy (TEM) indicated formation of CeO2-ZrO2 (CZ) mixed-oxide crystallites that stabilize the Pd active phase against sintering. Correlation of methane-oxidation rates with PES results demonstrated two distinct mechanisms for deactivation by SO2. Below 450 °C, the presence of SO2 in the feed led to partial reduction of the active PdO phase and to the formation of sulfates on the Pd. Above 500 °C, poisoning by SO2 was less severe due to spillover of the sulfates onto the oxide promoter. Pd@ZrO2 catalysts showed the best resistance to SO2 poisoning, outperforming analogous Pd@CZ mixed-oxide catalysts, because there was less sulfate formation and the sulfates that did form could be removed during regeneration.

The effect of sulfur dioxide on the activity of hierarchical Pd-based catalysts in methane combustion

Nasi L;Fornasiero P
2017

Abstract

SO2 poisoning of methane oxidation over alumina-supported, Pd@CexZr1-xO2 nanoparticle catalysts was systematically studied by means of advanced PhotoElectron Spectroscopy (PES) methods. The Pd@CexZr1-xO2 units were synthesized and deposited on two modified-alumina supports, i.e. high surface area modified alumina and a model alumina prepared by Atomic Layer Deposition (ALD) of alumina on Indium Tin Oxide (ITO)/quartz slides. The model support was designed to be suitable for PES analysis and was stable to high temperature treatments (850 °C). Characterization of the high-surface-area (HSA) catalysts by X-Ray Diffraction (XRD), N2 physisorption, CO chemisorption and Transmission Electron Microscopy (TEM) indicated formation of CeO2-ZrO2 (CZ) mixed-oxide crystallites that stabilize the Pd active phase against sintering. Correlation of methane-oxidation rates with PES results demonstrated two distinct mechanisms for deactivation by SO2. Below 450 °C, the presence of SO2 in the feed led to partial reduction of the active PdO phase and to the formation of sulfates on the Pd. Above 500 °C, poisoning by SO2 was less severe due to spillover of the sulfates onto the oxide promoter. Pd@ZrO2 catalysts showed the best resistance to SO2 poisoning, outperforming analogous Pd@CZ mixed-oxide catalysts, because there was less sulfate formation and the sulfates that did form could be removed during regeneration.
2017
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Ceria-Zirconia
Methane oxidation catalysts
Palladium
Sulfur dioxide
XPS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/328239
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 88
  • ???jsp.display-item.citation.isi??? 81
social impact