Abstract SPO2FRAG (Static PushOver to FRAGility) is introduced, a MATLAB®-coded software tool for estimating structure-specific seismic fragility curves of buildings, using the results of static pushover analysis. The SPO2FRAG tool (available online at http://wpage.unina.it/iuniervo) eschews the need for computationally demanding dynamic analyses by simulating the results of incremental dynamic analysis via the SPO2IDA algorithm and an equivalent single-degree-of-freedom approximation of the structure. Subsequently, fragility functions may be calculated for multiple limit states, using the intensity-measure-based analytical approach. The damage thresholds may also be random variables and uncertainty in estimation of the fragility parameters may be explicitly accounted for. The research background underlying the various modules comprising SPO2FRAG is presented together with an operational description of how the various functions are integrated within the software's graphical user interface. Two illustrative SPO2FRAG applications are also offered, using a steel and a reinforced concrete moment resisting frame. Finally, the software output is compared with the results of incremental dynamic analysis as validation of SPO2FRAG's effectiveness.
SPO2FRAG: software for seismic fragility assessment based on static pushover
Baltzopoulos Georgios;
2017
Abstract
Abstract SPO2FRAG (Static PushOver to FRAGility) is introduced, a MATLAB®-coded software tool for estimating structure-specific seismic fragility curves of buildings, using the results of static pushover analysis. The SPO2FRAG tool (available online at http://wpage.unina.it/iuniervo) eschews the need for computationally demanding dynamic analyses by simulating the results of incremental dynamic analysis via the SPO2IDA algorithm and an equivalent single-degree-of-freedom approximation of the structure. Subsequently, fragility functions may be calculated for multiple limit states, using the intensity-measure-based analytical approach. The damage thresholds may also be random variables and uncertainty in estimation of the fragility parameters may be explicitly accounted for. The research background underlying the various modules comprising SPO2FRAG is presented together with an operational description of how the various functions are integrated within the software's graphical user interface. Two illustrative SPO2FRAG applications are also offered, using a steel and a reinforced concrete moment resisting frame. Finally, the software output is compared with the results of incremental dynamic analysis as validation of SPO2FRAG's effectiveness.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


